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1 What’s Wrong with Maximum Likelihood?

Suppose we have a data set Y = {yi}ni=1 and a probability density model f(· | θ) where θ
is the parameter. If we try to fit model f with the data Y and obtain the estimate of the
parameter θ,

θ̂Y := arg max
θ

log f(Y |θ). (ML)

What are we actually doing here? We are supposing that if Y is generated from a probability
density f(· | θ0), then θ̂Y is a good estimate for θ0. This is extensively argued by Ronald
Fisher, the inventor of the Maximum Likelihood (ML) method.

Yet, this approach poses an obvious problem: What if Y follows another distribution
with density function g(· |ϕ0)? We can, of course, also find the ML estimate for ϕ0:

ϕ̂Y := arg max
ϕ

log g(Y |ϕ).

In the spirit of ML, we can compare the two log-likelihoods,

log f(Y | θ̂Y) and log g(Y | ϕ̂Y), (1)

and see which is larger. However, this poses another problem: since we only have one
observation Y, we can find some density function h(· |ψ) tailored to fit the data at hand
Y very well, producing a high likelihood h(Y | ψ̂Y), but fails to produce a high likelihood
h(X | ψ̂Y) when another data set X is presented. This is referred to as the problem of
overfitting.

Luckily, in describing overfitting, we are motivated to do cross-validation, i.e., to
use another data X (independent to Y but follows the sample distribution) to evaluate a
parameter estimated under data Y.

2 Deriving AIC

Let’s switch back to using f(· | θ) for our density function. Also let θ be a k-dimensional
vector of parameters. Instead of trying to estimate compare the log-likelihood like in (1),
we try to estimate the cross-validated version

log f(X | θ̂Y).

That is, after we obtained the estimator θ̂Y using the data set Y, we evaluate the likelihood
using another data set X. However, since we do not have another independent data set X,
we need to do some approximation.

First, we approximate log f(X | θ̂Y) by using the second-order Taylor expansion around
θ̂X:

log f(X | θ̂Y) ≈ log f(X | θ̂X) (0-th order)

+ (θ̂Y − θ̂X)
T

[
∂ log f(X | θ̂X)

∂θ

]
(first order)

+
1

2
(θ̂Y − θ̂X)

T

[
∂2 log f(X | θ̂X)

∂θ∂θT

]
(θ̂Y − θ̂X) (second order)

∗In this short introduction, I shall ignore some technical regularity conditions for clarity. I also assume
the reader is familiar ML estimator, it’s asymptotic properties, and Fisher information.
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Note that the first-order term (the Jacobian) is exactly zero since θ̂X is the ML estimator.
Thus, we have

log f(X | θ̂Y) ≈ log f(X | θ̂X)

+
1

2
(θ̂Y − θ̂X)

TJ(θ̂X)(θ̂Y − θ̂X)

where

J(θ̂X) =
∂2 log f(X | θ̂X)

∂θ∂θT .

This is the key insight of AIC: we can obtain the cross-validated log-likelihood by making
a “correction” to the estimated likelihood f(Y | θ̂Y). Now we split the correction term into
three parts:

(θ̂Y − θ̂X)
TJ(θ̂X)(θ̂Y − θ̂X) = (θ̂X − θ0)TJ(θ̂X)(θ̂X − θ0) (a)

+ (θ̂Y − θ0)TJ(θ̂X)(θ̂Y − θ0) (b)
− 2(θ̂Y − θ0)TJ(θ̂X)(θ̂X − θ0) (c)

We can easily see that part (c) goes to zero asymptotically (n → ∞):

(θ̂Y − θ0)TJ(θ̂X)(θ̂X − θ0) = (θ̂Y − θ0)T︸ ︷︷ ︸
p−→0

J(θ̂X) (θ̂X − θ0)︸ ︷︷ ︸
p−→0

.

Part (a) and (b) are similar in form:

(θ̂Y − θ0)TJ(θ̂X)(θ̂Y − θ0) = trace
(
n(θ̂Y − θ0)(θ̂Y − θ0)T J(θ̂X)

n

)

(θ̂X − θ0)TJ(θ̂X)(θ̂X − θ0) = trace
(
n(θ̂X − θ0)(θ̂X − θ0)T J(θ̂X)

n

)
.

Since θ̂X and θ̂Y are both ML estimators, the expectation of the blue parts is approximately
the inverse of Fisher information (asymptotic variance). By information equality, J(θ̂X)/n
also converges to the negative of Fisher information in probability. Hence, we have part (a)
and (b) approximated as the trace of identity matrices of dimension k× k. That is, we have
both parts approximated as −k.

Therefore, our approximation for the cross-validated log-likelihood is

log f(X | θ̂Y) ≈ log f(X | θ̂X)− k.

This is the famous AIC. However, AIC is often written as

AIC = 2k − 2 log f(X | θ̂X). (AIC)

This is due to its connect with information theory and Kullback-Leibler Divergence.

3 AIC’s Connection with Kullback-Leibler Divergence

KL divergence is an information theoretic measure of the discrepancy between two distribu-
tions. It is defined as

KL(p ∥ q) :=

∫
X

log
[
p(x)

q(x)

]
p(x) dx

where p and q are two densities on the same support X . The two main properties of KL are
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1. KL(p ∥ q) ≥ 0 ∀p, q.

2. KL(p ∥ q) = 0 iff p = q (almost everywhere).

That is, KL(p ∥ q) is small when p and q are similar.
In our case, we want to know the discrepancy between the “true” likelihood function

f(· | θ0) and the estimated likelihood function f(· | θ̂Y). Hence, we wish to choose the model
with small discrepancy between the two:

KL(f(· | θ0) ∥ f(· | θ̂Y)) =

∫
X

log
[
f(X |θ0)
f(X | θ̂Y)

]
f(X |θ0) dX

=

∫
X

log f(X |θ0)f(X |θ0) dX (entropy)

+

∫
X
− log f(X | θ̂Y)f(X |θ0) dX (cross-entropy)

= constant − EX log f(X | θ̂Y)

Thus, we can view (AIC) as an approximation of cross-entropy. Measuring the discrep-
ancy between f(· | θ0) and f(· | θ̂Y) makes intuitive sense: the problem of overfitting can
be understood as a large discrepancy between the “true” likelihood and the “estimated”
likelihood. In the original paper (Akaike, 1974), AIC is motivated by KL. Hence, AIC is
represented as the negative of the cross-validated likelihood to match the sign of cross-
entropy. Thus in practice, we want to select the model with small AIC.

4 Why Times Two?

If we consider a Gaussian model with θ = (µ, σ2), the log-likelihood is written as

log f(X |θ) = −n

2
log(2π)− n

2
logσ2 − 1

2σ2

n∑
i=1

(xi − µ)2.

It is a lot nicer to write 2 log f(X |θ) so we can get rid of those 1
2 ’s. That’s why. ■

Acronyms

AIC Akaike Information Criterion. 1–3
KL Kullback-Leibler Divergence. 2, 3
ML Maximum Likelihood. 1, 2
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