1 Statement of the Theorem

Definition 1 (Preference Relation). Let \mathcal{X} denote a set of alternatives. A binary relation \succeq over \mathcal{X} is said to be a *preference relation* if it satisfies the following properties:

- 1. Completeness: $\forall \{x, y\} \subseteq \mathcal{X}, x \not\gtrsim y$ implies $y \succeq x$.
- 2. Transitivity: $\forall \{x, y, z\} \subseteq \mathcal{X}, x \succeq y \text{ and } y \succeq z \text{ implies } x \succeq z.$

Definition 2 (Social Choice Model (SCM)). An SCM consists of the following:

- 1. Alternatives: A set of alternatives \mathcal{X} .
- 2. INDIVIDUALS: A set of finite individuals \mathcal{N} with $|\mathcal{N}| = n$.
- 3. PREFERENCE PROFILE: An *n*-tuple of individual preferences $P = (\succeq_1, ..., \succeq_n)$ over alternatives \mathcal{X} . Denote the space of all possible preference profiles as \mathcal{P} .
- 4. SOCIAL WELFARE FUNCTION: A Social Welfare Function (SWF), denoted by φ , is a function that assigns a preference relation \succeq_P to every possible preference profile P. We write the output of $\varphi(P)$ as \succeq_P .

Remark 1. Something to note with SWF:

- 1. SWF is a way to aggregate preference to form an "overall preference" of the individuals. Note that this means for any profile P, φ cannot simply spit-out a single element in \mathcal{X} and declare it to be 'the' choice. The output has to be a preference relation, which is able to compare every element in the alternatives \mathcal{X} .
- 2. We require SWF to be a function, i.e., it has to produce a social preference for any possible preference profile. This properties is sometimes referred in the literature as *unrestricted domain*.

Naturally, we wish an SWF to satisfy certain properties we deem "fair" or "obvious."

Axiom 1 (Pareto Efficiency (PE)). An SWF is said to satisfy *PE* if for any profile $P = (\succeq_i)_{i \in \mathcal{N}}$ such that $x \succeq_i y$ $\forall i \in \mathcal{N}$, we have $x \succeq_P y$.

Remark 2. That is to say, if everyone prefers x to y, then the aggregated social preference should also reflect that.

Axiom 2 (Independent of Irrelevant Alternatives (IIA)). An SWF is said to satisfy *IIA* if for any two profiles $P = (\succeq_i)_{i \in \mathcal{N}}$ and $P' = (\succeq'_i)_{i \in \mathcal{N}}$ such that $x \succeq_i y$ iff $x \succeq'_i y$, we have $x \succeq_P y$ iff $x \succeq_{P'} y$.

Remark 3. That is, if two preference profiles ranks alternatives x and y the same way, then the aggregate preferences should rank x and y the same way, regardless of how other alternatives are ranked in the two profiles.

Theorem 1 (Arrow's Impossibility Theorem). Under an SCM with $|\mathcal{X}| \geq 3$, any SWF φ that satisfies PE and IIA is dictatorial, that is, $\exists i^* \in \mathcal{N}$ such that $\varphi(P) = \succeq_{i^*} \forall P \in \mathcal{P}$.

2 Proof of the Theorem

Definition 3 (Decisiveness). Under an SCM, a group of individuals $\mathcal{G} \subseteq \mathcal{N}$ is said to be *decisive* over a pair of alternatives $\{x, y\} \subseteq \mathcal{X}$ if $x \succeq_P y$ whenever preference profile P satisfies $x \succeq_i y \forall i \in \mathcal{G}$.

Lemma 1.1 (Globally Decisive Group). Suppose an SWF satisfies PE and IIA. If a group \mathcal{G} is decisive over a pair $\{x, y\} \subseteq \mathcal{X}$, then the group is decisive over every pair in \mathcal{X} .

Proof. Let $\{a, b\} \subseteq \mathcal{X}$ be different from $\{x, y\}$. Suppose that in a certain profile *P*, we have $a \succeq_i x$ and $y \succeq_i b \forall i \in \mathcal{N}$. By PE, we must have $a \succeq_P x$ and $y \succeq_P b$. Further suppose that in profile *P*, we have $x \succeq_P y$. Since $\subseteq \mathcal{G}$. Then, since \mathcal{G} is decisive over $\{x, y\}$, we have $x \succeq_P y$. Since \succeq_P must be transitive, we have $a \succeq_P b$. Notice that for the individuals outside of \mathcal{G} , the preference relation between *a* and *b* is unspecified under *P*. Consider another preference profile *P'* where the preference relation between $\{a, b\}$ is the same as *P* for all individuals, but the preferences over other alternatives, including $\{x, y\}$, are arbitrary. By IIA, we must have $a \succeq_{P'} b$ since $a \succeq_P b$. Hence, the group \mathcal{G} is also decisive over the pair $\{a, b\}$. Similarly, we can consider pairs $\{x, b\}$ or $\{a, y\}$ and conclude that \mathcal{G} is decisive over those pairs.

Remark 4. By Lemma 1.1, decisiveness over any pair entails decisiveness over every pair. Hence, we will simply refer to groups as *decisive* without specifying the pair of alternatives.

Lemma 1.2 (Contraction of Decisive Group). Suppose an SWF satisfies PE and IIA. If \mathcal{G} is decisive (with more than one individual), then a proper subset of \mathcal{G} is also decisive.

Proof. Partition the group \mathcal{G} into two non-empty sub-groups: \mathcal{G}_1 and \mathcal{G}_2 . Suppose that we have a profile P such that $x \succeq_i y$ and $x \succeq_i z \ \forall i \in \mathcal{G}_1$, also $x \succeq_i y$ and $z \succeq_i y \ \forall i \in \mathcal{G}_2$. Since \mathcal{G} is decisive, we have $x \succeq_P y$. Consider two cases:

- Suppose $z \succeq_P x$, then by transitivity we have $z \succeq_P y$. Notice that no assumption about the preference relation over $\{y, z\}$ is made apart from the individuals in \mathcal{G}_2 . Hence, by IIA, \mathcal{G}_2 is decisive since \mathcal{G}_2 is decisive over $\{y, z\}$.
- Suppose $z \not\gtrsim_P x$, then by completeness we have $x \succeq_P z$. Similarly, no assumption about the preference relation over $\{x, z\}$ is made apart from the individuals in \mathcal{G}_1 . Hence, by IIA, \mathcal{G}_1 is decisive.

Therefore, between \mathcal{G}_1 and \mathcal{G}_2 , one of which must be decisive.

Proof of Arrow's Impossibility Theorem. By PE, all individuals as a group \mathcal{N} is decisive. By Lemma 1.2, we known that a proper subset of \mathcal{N} is, too, decisive. Since \mathcal{N} is finite, this process of 'contracting' the decisive group terminates when the decisive group contains only one individual, the dictator.

^{*}This note draws heavily from Maskin and Sen (2014) The Arrow Impossibility Theorem and Rubinstein (2006) Lecture Notes in Microeconomic Theory. This note is essetionally a quick summary of some of the results mentioned in both for my own reference.