Consider two covariance matrices $\mathbf{A}_{n \times n}$ and $\mathbf{B}_{n \times n}$. We say that A is *bigger* than B, often denoted by $A \geq B$ or $A \succeq B$, if $A - B$ is semi-positive definite. Why do we use the "definiteness" of a matrix to compare the size of two covariance matrices?

First, notice that a covariance matrix is not only symmetrical, but also semi-positive definite. Consider a random vector $\mathbf{x} = (x_1, ..., x_n)^\top$. The covariance matrix is defined by

$$
\mathbf{K} \coloneqq \mathbf{E}[(\mathbf{x} - \mathbf{E}[\mathbf{x}])(\mathbf{x} - \mathbf{E}[\mathbf{x}])^{\top}].
$$

Given any constant vector \bf{v} of length n , we have

$$
\mathbf{v}^\top \mathbf{K} \mathbf{v} = \mathbf{E}[\mathbf{v}^\top (\mathbf{x} - \mathbf{E}[\mathbf{x}])(\mathbf{v}^\top (\mathbf{x} - \mathbf{E}[\mathbf{x}]))^\top] \ge 0
$$

by the definition of K . Therefore, the covariance matrix K is semi-positive definite. In fact, v *⊤*Kv is zero iff x has no variance at all.

There is another intuitive way of interpreting the definiteness described above. Consider the same vector v and the random vector x. The dot product v *[⊤]*x is the projection of the random vector from *n*-dimensional space on a one-dimensional space along the direction of v, i.e., this collapse the *n*dimensional random variable to a one-dimensional random variable through some linear combination. If we calculate the variance of the one-dimensional random variable v *[⊤]*x, we obtain

$$
\operatorname{Var}[\mathbf{v}^{\top}\mathbf{x}] = \mathbf{E}[\mathbf{v}^{\top}\mathbf{x}(\mathbf{v}^{\top}\mathbf{x})^{\top}] - \mathbf{E}[\mathbf{v}^{\top}\mathbf{x}] \mathbf{E}[\mathbf{v}^{\top}\mathbf{x}]^{\top}
$$

$$
= \mathbf{v}^{\top} (\mathbf{E}[\mathbf{x}\mathbf{x}^{\top}] - \mathbf{E}[\mathbf{x}] \mathbf{E}[\mathbf{x}]^{\top}) \mathbf{v}
$$

$$
= \mathbf{v}^{\top} \mathbf{K} \mathbf{v}.
$$

Notice that the variance assumes the exact form as before. And since variance is non-negative, it is clear that the covariance matrix must be semipositive definite. That is, for any direction v, the variance of "x projected on that direction" is (clearly) non-negative.

Motivated by the intuitive interpretation, lets now compare two covariance matrices. Let $x =$ $(x_1, ..., x_n)$ [⊤] and **y** = $(y_1, ..., y_n)$ [⊤] be random vectors with mean $(0, ..., 0)^\top$ for simplicity. Let $\mathbf{A} =$ $\mathbf{E}[\mathbf{x}\mathbf{x}^{\top}]$ and $\mathbf{B} = \mathbf{E}[\mathbf{y}\mathbf{y}^{\top}]$ be the covariance matrices. Our goal is to compare A and B in some meaningful way. We can project **x** and **y** on a vector **v**, and then compare the variance (non-negative real number) of the two projections. To make the comparison meaningful, it is reasonable to compare *all* possible projections, i.e., consider all [possible choices of](https://jessekelighine.com) v.

Formally, consider any vector v. The projection of **x** on **v** is $\mathbf{v}^\top \mathbf{x}$. The variance of $\mathbf{v}^\top \mathbf{x}$ is

$$
\mathbf{E}[(\mathbf{v}^{\top}\mathbf{x})^2] = \mathbf{E}[\mathbf{v}^{\top}\mathbf{x}\mathbf{x}^{\top}\mathbf{v}]
$$

$$
= \mathbf{v}^{\top}\mathbf{E}[\mathbf{x}\mathbf{x}^{\top}]\mathbf{v} = \mathbf{v}^{\top}\mathbf{A}\mathbf{v}
$$

where **A** is the covariance matrix. Similarly, consider the same for y. If we find that *∀*v,

$$
\mathbf{v}^\top \mathbf{A} \mathbf{v} - \mathbf{v}^\top \mathbf{B} \mathbf{v} = \mathbf{v}^\top (\mathbf{A} - \mathbf{B}) \mathbf{v} \ge 0,
$$

then, by definition, $\mathbf{A} - \mathbf{B}$ is semi-positive definite. Now we know why we say A is *larger* than B when A *−* B is positive definite:

If A *−* B is positive definite, then *for all possible directions* v, the variance of x is larger than y's. *^a*

*^a*This order of semi-positive definite matrices is called the Löwner ordering.

This int[er](#page-0-0)pretation of the partial ordering can be understood easily through visualisation. The following a[re representati](https://en.wikipedia.org/wiki/Loewner_order)ons of the distributions x and y where the two random vectors are twodimensional:

Let x with covariance matrix A be the blue distribution and y with covariance matrix B be the red distribution. It is clear that in case 1, A is *bigger* than \bf{B} since the variance of \bf{x} is bigger that $\bf{y}'s$ in *every* direction. (every possible direction of projection) However, the same statement is not true in case 2. In some directions (e.g. v_1), the variance of x is larger; in other directions (e.g. v_2), the variance of y is larger. Thus, A and B are not comparable by the partial order in case 2. $\#$