
Fisher Information 2024-07-27
jessekelighine.com
Jesse C. Chen 陳捷

Fisher Information is defined as follows:

Iθ := E
[(

∂

∂θ
log f(x | θ)

)(
∂

∂θ
log f(x | θ)

)⊤
∣∣∣∣∣ θ
]

where f(· | θ) is the likelihood function of the random variable x with parameter
θ. The expectation is taken with respect to the random variable x.

In this note, we talk about what Fisher Information is, its relation to maxi-
mum likelihood, its conflicting intuitions, and Cramér-Rao bound, an inequality
closely related to Fisher Information. 1

1 What are we trying to do?

The goal is simple:

We want to have a way of measuring “how sensitive the likelihood
function is to a parameter.”

That is, whether a small change in the parameter will have a big impact on
the shape of the likelihood function. The reasoning behind this goal is: If a
small change in the parameter changes the shape of the likelihood function by
a lot, then it is easier to tell two different values of the parameter apart, thus
leading to more “precise” estimates; In contrast, if changes in the parameter
does not alter the shape of the likelihood function much, then we would expect
the estimate of such parameter “poor,” since likelihood functions under different
values of the parameter look similar to us.

We will later see that Fisher Information achieves precisely this purpose in
the context of maximum likelihood estimation.

2 Variance of Score Function

Let’s first define some notation. Let ℓ(x | θ) := log f(x | θ) be the log-likelihood
function. We use Newton’s notation to denote differentiation with respect to
the parameter, that is,

ℓ̇(x | θ) := ∂

∂θ
ℓ(x | θ) = ∂

∂θ
log f(x | θ).

Notice that ℓ̇(x | θ) has mean zero:

E ℓ̇(x | θ) =
∫
X

[
∂

∂θ
log f(x | θ)

]
f(x | θ)dx

=

∫
X
ḟ(x | θ)dx =

∂

∂θ

∫
X
f(x | θ)dx = 0.

1I this note, I shall assume the knowledge of maximum likelihood estimation and linear
algebra.
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Thus, we have Var ℓ̇(x | θ) = E ℓ̇(x | θ)ℓ̇(x | θ)⊤, 2 which is the definition of Fisher
Information. This observation gives us the first intuition of Fisher Information:

Intuition 1. Large Fisher Information means large variance in the score
function ℓ̇(x | θ). a And a large variation in the score function means that
our maximum likelihood estimate, which solves the problem

arg max
θ∈Θ

ℓ(x | θ)

via first order condition

ℓ̇(x | θ) = 0,

also has a large variance. This means that a large Fisher Information is
bad.

aA large covariance matrix means the variance is large along every direction. You can
find an intuitive explanation on my website.

3 Information Equality

Before jumping to conclusion, let’s consider E ℓ̈(x | θ0), the expected Hessian
matrix of the log-likelihood function. It turns out E ℓ̈(x | θ0) and Var ℓ̇(x | θ0)
only differ by a negative sign:

E ℓ̈(x | θ) =
∫
X

[
∂2

∂θ∂θ⊤
log f(x | θ)

]
f(x | θ)dx

=

∫
X

[
f̈(x | θ)
f(x | θ)

− ḟ(x | θ)ḟ(x | θ)⊤

f(x | θ)2

]
f(x | θ)dx

=
∂2

∂θ2

∫
X
f(x | θ)dx︸ ︷︷ ︸
=0

−
∫
X
ℓ̇(x | θ)ℓ̇(x | θ)⊤f(x | θ)dx = −Var ℓ̇(x | θ)

This result is sometimes referred to as information equality. The equality states
that the asymptotic variance of θ̂ is simply the negative of the Hessian of the
log-likelihood function.

However, this means that we can also defined Fisher Information as
−E ℓ̈(x | θ), which yields another intuition:

Intuition 2. A large Fisher information is actually good, since it is the
Hessian matrix of the log-likelihood function. A larger Hessian implies a
larger curvature, meaning that the log-likelihood function is more “defined”
or “pointy” for our parameter, which naturally leads to a better estimation.

This is in direct conflict with Intuition 1, how do we resolve this?
2We shall assume that Leibniz rule of differentiation is always satisfied for interchanging

integration and differentiation.
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4 Maximum Likelihood

Let’s be precise. Suppose we have the data set {xi}ni=1
iid∼ f(· | θ0). Then we

denote the joint log-likelihood as

ℓ({xi} | θ) :=
n∑

i=1

ℓ(xi | θ).

We want to derive the asymptotic distribution of the maximum likelihood esti-
mator θ̂ as n → ∞. By mean value theorem, we have

ℓ̇({xi} | θ̂)︸ ︷︷ ︸
=0

−ℓ̇({xi} | θ0) = ℓ̈({xi} | θ̄)(θ̂ − θ0)

where θ̄ is a value between θ0 and θ̂. Supposing we already have the consistency
result θ̂

p−→ θ0, we have

√
n(θ̂ − θ0) = −

[
ℓ̈({xi} | θ̄)

n

]−1(
ℓ̇({xi} | θ0)√

n

)
d−→ −E

[
ℓ̈(x | θ0)

]−1

N (0,Var ℓ̇(x | θ0)).

Now we know the asymptotic distribution of
√
n(θ̂−θ0) is a normal distribution

centered at 0 with variance E[ℓ̈(x | θ0)]−1 Var ℓ̇(x | θ0)E[ℓ̈(x | θ0)]−1.
Notice this this result confirms with both of our intuitions: we have Var ℓ̇(x | θ)

in the nominator (in concord with Intuition 1), and E ℓ̈(x | θ0) in the denomi-
nator (in concord with Intuition 2). Hence, it is a trade-off between these two
effects we found in the two intuitions. And by information equality, we obtain
the famous maximum likelihood result:

√
n(θ̂ − θ0)

d−→ N (0, I−1
θ ).

Therefore, a “larger” Fisher Information is what we really want. This does not
mean that Intuition 2 is correct and Intuition 1 is wrong, it is a result of both
intuitions combined.

Note that the maximum likelihood result achieves what we set out to do in
the first place. We now know that the estimation quality of θ̂ depends on the
size of Iθ: the larger Iθ is, the more precise the estimation, i.e., under the same
number of samples n, a larger Iθ yields a more precise result. 3

5 Cramér-Rao Bound

Now we know that Fisher Information tells us the precision of our estimation,
but can we do better? Can we be more precise? The answer is NO, given
that we want the estimation to be unbiased. 4 This result is called Cramér-
Rao bound, stating that any other unbiased estimation of θ0 must have variance
larger than I−1

θ .
3In some contexts (mostly in Bayesian statistics), the inverse of a covariance matrix is

called the precision matrix. Thus, we can view Fisher Information as the precision matrix of
the asymptotic distribution. I find this name particularly fitting in this context.

4Maximum likelihood estimation is not always unbiased, but the order of the bias is small
O(1/n).
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Suppose θ̃ = t({xi}) is an unbiased estimator for θ0, it’s straightforward
via some algebra to see that we have the covariance between ℓ̇({xi} | θ) and
t({xi})− θ as an identity matrix of dimension k:

E[t({xi})− θ]ℓ̇({xi} | θ)⊤ = Ik,

where k is the length of θ0.
A slight variation of Cauchy-Schwarz inequality states that for random vec-

tors v and u both with mean 0, we have that E(vv⊤)−E(vu⊤)E(uu⊤)−1 E(uv⊤)
is positive definite. 5 If we plugin v = t({xi})− θ and u = ℓ̇({xi} | θ), we have

Var t({xi})− (nIθ)−1

is positive definite. Therefore, Var t({xi}) is larger than (nIθ)−1. 6

What does it mean to be compared to (nIθ)−1? When n is sufficiently
large, we have the approximation

θ̂ − θ0
A∼ N (0, (nIθ)−1)

Hence, we can see that the variance of our maximum likelihood estimator is
approximately (nIθ)−1, which beats every other unbiased estimator.

∗ ∗ ∗

In a nutshell:

1. Maximum likelihood is the best method in the sense that it pro-
duces the most precise estimator among all the unbiased estimators.

2. Fisher Information is a reasonable definition of “information,” as
it describes the best “precision” under all unbiased estimators of θ.

5Note E(v+Au)(v+Au)⊤ is positive definite. Let A = −E vu⊤(Euu⊤)−1 and we obtain
the desired result.

6If you are not sure what does positive definiteness have to do with the concept of “larger,”
you can find an intuitive explanation on my website.
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