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Bayesian Inference

The concept of Bayesian inference is different from that of the
Frequentists’. The main difference is whether there is a prior belief
on the parameters of interest.

Consider a parameter vector µ ∼ g(·) where g is some density (µ
is N dimensional), and g(µ) in turn give rise to an observable data
vector z where

z |µ ∼ fµ(z).

In Bayesian statistics, g(µ) is called a prior distribution, which
represents our prior knowledge of the parameters µ. A
statistician’s job is to inference µ given the observations z.
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In Frequentists’ world, no prior knowledge on the parameters µ are
assumed. In Bayesian statistics, we obtain the following from
Bayes’ formula for the inference:

g(µ | z) = g(µ)
fµ(z)

f(z)

where g(µ | z) is the posterior distribution, i.e., the updated
distribution after observing z. If we have a reasonable prior belief
on µ, it is often the case that Bayesian statistics performs better
than Frequentists’ arguments.

The James-Stein estimator is a Frequentists’ method that harvests
the power of Bayesian statistics through empirical estimation.
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Motivation from Bayesian estimators

Consider the special case where

µ ∼ NN (0, AI) and z |µ ∼ N (µ, I) .

We can calculate that the posterior distribution of µ as

µ | z ∼ NN (Bz, BI) where B =
A

A+ 1
.
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The “obvious” MLE estimator for µ is simply

µ̂(MLE) = (z1, ..., zN )′ = z,

which, proven by Fisher, is a MVUE in the one dimensional
case.
On the other hand, the Bayesian estimator is based on the
posterior distribution, thus, we have

µ̂(Bayes) = Bz =

(
A

A+ 1

)
z =

(
1− 1

A+ 1

)
z

Note that while µ̂(MLE) is an unbiased estimator, µ̂(Bayes) is not,
since it is shrunken towards 0.
Then what is the advantage of µ̂(Bayes)?
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Consider the mean-square error of the two estimators:
For MLE, we have

E
[
∥µ̂(MLE) − µ∥2

]
:= E

[
N∑
i=1

(µ̂
(MLE)
i − µi)

2

]
= N

For Bayesian estimator, we have

E
[
∥µ̂(Bayes) − µ∥2

]
= BN =

(
A

1 +A

)
N < N

That is, the Bayesian estimator offers some saving in mean-square
error. If A = 1, then the mean-square error of the Bayesian
estimator is only half of that of the MLE.
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Empirical Bayes

Unfortunately, without knowing A, it is not possible to
construct the Bayesian estimator.
However, we can use the estimator of A to construct the
Bayesian estimator. (aka “plug-in principle”)
Consider the marginal distribution of z, we have

z ∼ NN (0, (A+ 1)I) .

From the marginal distribution we can construct an estimator

B̂ := 1− (N − 2)/S

where S := ∥z∥2 such that E[B̂] = B = A/(1 +A).
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James-Stein Estimator

Therefore, the James-Stein estimator is defined as

µ̂(JS) := B̂z =

(
1− N − 2

S

)
z

If we allow the mean of the prior distribution of µ be
M = (M, ...,M)′ instead of 0, we have a similar definition of
James-Stein estimator:

µ̂(JS) := M̂ + B̂(z − M̂) where

M̂ = (z̄, ..., z̄)′

B̂ = 1− N − 3

∥z − z̄∥2

It remains to show that the James-Stein estimator is still better
than MLE (the plug-in principle introduces more variance).
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Surprisingly, the JS estimator performs nearly as well as the
Bayesian estimator. If we consider mean-square error the ratio
between the Bayesian and the JS estimator, we have

E
[
∥µ̂(JS) − µ∥2

]
E
[
∥µ̂(Bayes) − µ∥2

] = 1 +
2

NA

where the ratio tends to one on the order of O(1/N).

However, the biggest shock JS estimator brought was not that the
estimator performs better, since biasing for the some choices of µ
is implied in the derivation. The true shock came from the fact
that MLE is dominated in higher dimensions by the JS estimator.
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Domination over MLE

James-Stein Theorem, aka Stein’s Paradox:

Theorem (James-Stein (1961))
For N ≥ 4, the James-Stein estimator everywhere dominates the
MLE µ̂(MLE) in terms of expected total square, i.e.,

Eµ

[
∥µ̂(JS) − µ∥2

]
< Eµ

[
∥µ̂(MLE) − µ∥2

]
for every choice of µ. MLE is said to be inadmissible.

That is, JS estimator not only performs well when µ are near the
estimated mean, it performs well no matter one’s prior belief
(no matter the realisation of µ).
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1 Show

Eµ

[
∥µ̂− µ∥2

]
= Eµ

[
∥z − µ̂∥2

]
−N +

N∑
i=1

Covµ(µ̂i, zi) .

2 Show the following given zi is normal:

Covµ(µ̂i, zi) = Eµ[∂µ̂i/∂zi] .

3 Obtain from (1) and (2) that

Eµ

[
∥µ̂(JS) − µ∥2

]
= N − Eµ

[
(N − 3)2/S

]
.

4 Since MLE’s mean-square error is N , given that N ≥ 3, it is
guaranteed JS estimator dominates MLE. □
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MLE or JS estimator? Example: Major league

1.3. ESTIMATING THE INDIVIDUAL COMPONENTS 7

Table 1.1: Batting averages zi = µ̂(MLE)
i for 18 major league players early in the 1970 season;

µi values are averages over the remainder of the season. The James–Stein estimates µ̂(JS)
i (1.35)

based on the zi values provide much more accurate overall predictions for the µi values. (By
coincidence, µ̂i and µi both average 0.265; the average of µ̂(JS)

i must equal that of µ̂(MLE)
i .)

Name hits/AB µ̂(MLE)
i µi µ̂(JS)

i

Clemente 18/45 .400 .346 .294
F Robinson 17/45 .378 .298 .289
F Howard 16/45 .356 .276 .285
Johnstone 15/45 .333 .222 .280
Berry 14/45 .311 .273 .275
Spencer 14/45 .311 .270 .275
Kessinger 13/45 .289 .263 .270
L Alvarado 12/45 .267 .210 .266
Santo 11/45 .244 .269 .261
Swoboda 11/45 .244 .230 .261
Unser 10/45 .222 .264 .256
Williams 10/45 .222 .256 .256
Scott 10/45 .222 .303 .256
Petrocelli 10/45 .222 .264 .256
E Rodriguez 10/45 .222 .226 .256
Campaneris 9/45 .200 .286 .252
Munson 8/45 .178 .316 .247
Alvis 7/45 .156 .200 .242

Grand Average .265 .265 .265

1.3 Estimating the Individual Components

Why haven’t James–Stein estimators displaced MLE’s in common statistical practice?
The simulation study of Table 1.2 o↵ers one answer. Here N = 10, with the 10 µi values
shown in the first column; µ10 = 4 is much di↵erent than the others. One thousand
simulations of z ⇠ N10(µ, I) each gave estimates µ̂

(MLE) = z and µ̂
(JS) (1.23). Average

squared errors for each µi are shown. For example (µ̂(MLE)

1
� µ1)2 averaged 0.95 over

the 1000 simulations, compared to 0.61 for (µ̂(JS)

1
� µ1)2.

We see that µ̂(JS)

i
gave better estimates than µ̂(MLE)

i
for the first nine cases, but was

much worse for estimating the outlying case µ10. Overall, the total mean squared errors
favored µ

(JS), as they must.

Exercise 1.5. If we assume that the µi values in Table 1.2 were obtained from µi

ind⇠
N (0, A), is the total error 8.13 about right?

The James–Stein theorem concentrates attention on the total squared error loss
function

P
(µ̂i � µi)2, without concern for the e↵ects on individual cases. Most of

those e↵ects are good, as seen in Table 1.2, but genuinely unusual cases, like µ10, can

Obviously, the MLE estimator is
the early game average.
JS estimator improves the
estimation by a lot. The
mean-square error ratio of JS
estimation and MLE is about
0.28, a signifiant reduction of
total error.
But what is the problem of JS
estimator?
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96 James–Stein Estimation and Ridge Regression

works perfectly well in less ideal situations. That is the case in Table 7.1:
18X
iD1
.MLEi!TRUTHi /2 D 0:0425 while

18X
iD1
.JSi!TRUTHi /2 D 0:0218:

(7.24)
In other words, the James–Stein estimator reduced total predictive squared
error by about 50%.

0.15 0.20 0.25 0.30 0.35

●●●●●●●●●●●●●●●●●●MLE

●●●●●●●●●●●●●●●●●●JAMES−STEIN

● ●● ●● ● ●●● ●●● ● ● ●● ●●TRUE

Batting averages

Figure 7.1 Eighteen baseball players; top line MLE, middle
James–Stein, bottom true values. Only 13 points are visible, since
there are ties.

The James–Stein rule describes a shrinkage estimator, each MLE value
xi being shrunk by factor OB toward the grand mean OM D Nx (7.13). ( OB D
0:34 in (7.20).) Figure 7.1 illustrates the shrinking process for the baseball
players.

To see why shrinking might make sense, let us return to the original
Bayes model (7.8) and take M D 0 for simplicity, so that the xi are
marginally N .0; A C 1/ (7.11). Even though each xi is unbiased for its
parameter !i , as a group they are “overdispersed,”

E

(
NX
iD1

x2i

)
D N.AC 1/ compared with E

(
NX
iD1

!2i

)
D NA: (7.25)

The sum of squares of the MLEs exceeds that of the true values by expected
amount N ; shrinkage improves group estimation by removing the excess.

JS estimator over shrink the estimates, and it is a poor estimator
for extreme values.
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Table 1.2: Simulation experiment: z ⇠ N10(µ, I) with (µ1, µs, . . . , µ10) as shown in first
column. MSE(MLE)

i is the average squared error (µ̂(MLE)
i � µi)2, likewise MSE(JS)

i . Nine of the
cases are better estimated by James–Stein, but for the outlying case 10, µ̂(JS)

10 has nearly twice
the error of µ̂(MLE)

10 .

µi MSE(MLE)

i
MSE(JS)

i

1 �.81 .95 .61
2 �.39 1.04 .62
3 �.39 1.03 .62
4 �.08 .99 .58
5 .69 1.06 .67
6 .71 .98 .63
7 1.28 .95 .71
8 1.32 1.04 .77
9 1.89 1.00 .88

10 4.00 1.08 2.04!!

Total Sqerr 10.12 8.13

su↵er. Baseball fans know that Clemente was in fact an extraordinarily good hitter, and
shouldn’t have been shrunk so drastically toward the mean of his less-talented cohort.
Current statistical practice is quite conservative in protecting individual inferences from
the tyranny of the majority, accounting for the continued popularity of stand-alone
methods like µ̂

(MLE). On the other hand, large-scale simultaneous inference, our general
theme here, focuses on favorable group inferences.

Compromise methods are available, that capture most of the group savings while
protecting unusual individual cases. In the baseball example, for instance, we might
decide to follow the James–Stein estimate (1.35) subject to the restriction of not devi-
ating more than D �0 units away from µ̂(MLE)

i
= zi (the so-called “limited translation

estimator” µ̂(D)

i
):

µ̂(D)

i
=

8
<

:
max

⇣
µ̂(JS)

i
, µ̂(MLE)

i
�D�0

⌘
for zi > z̄

min
⇣
µ̂(JS)

i
, µ̂(MLE)

i
+ D�0

⌘
for zi  z̄.

(1.37)

Exercise 1.6. Graph µ̂(D)

i
as a function of zi for the baseball data.

Taking D = 1 says that µ̂(D)

i
will never deviate more than �0 = 0.066 from zi, so

Clemente’s prediction would be µ̂(D)

1
= 0.334 rather than µ̂(JS)

1
= 0.294. This sacrifices

some of the µ̂
(JS) savings relative to µ̂

(MLE), but not a great deal: it can be shown to
lose only about 10% of the overall James–Stein advantage in the baseball example.

Left chart is created through
simulations with
z |µ ∼ N10 (µ, I).
Notice that although the total
error improves under JS
estimator, but individual
estimation sufferers from the
shrinkage.
Traditional statistical methods
are conservative in protecting
individual effects from the
tyranny of the majority, while
JS estimator does not.
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However, sacrificing individual performance does imply a
better performance over all. In cases of large scale inferences,
a better overall performance is favoured.
If we insist on preserving some correctness of individual
inferences, compromising methods are available. One such
compromising method is to choose MLE (adjusted with
overall s.d.) whenever the JS estimator and MLE disagree too
much. This method is call Limited translation estimates,
developed by Efron & Morris in the 1970s.
JS estimator are also applied to adjust regression results and
construct confidence intervals. More methods, throughout the
years, are introduced to “generalized” the result of JS
estimator.
In fact, Stein proved that MLE is inadmissible before
proposing the JS estimator. He also proved that JS estimator
itself is also inadmissible, but no explicit form has been found.
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James and Stein not only introduced an estimator that dominates
MLE in high dimension inference, the JS estimator also inspired
other modern statistical methods through the following two ways:

1 Learning from the experience of others: This is a
borrowing from Bayesian statistics into Frequentists’ arsenal:
the idea that estimation can be improved using “indirect
evidence.” Later employed into large scale hypothesis testing
and false discovery rate control.

2 Shrinkage: The shrinkage principle and bias-variance
trade-off are perhaps the two of the most influential ideas in
modern day statistics and machine learning. Lasso, Ridge, and
other regulation methods in regression are now common
place. ■
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