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We are given a data set {yi, xi}ni=1 where xi = (xi1, ..., xik)
⊤’s are k× 1 vectors

and yi’s are scalars. It is known that the Data Generating Process (DGP) is

yi = µ(xi) + ϵi

where ϵi is a random variable with mean zero and variance σ2. That is, for
each input xi, an output yi is produced with an independent and identically
distributed (iid) error ϵi. However, µ is an unknown function and it might only
utilize a subset of the k inputs. We represent the process compactly as y = µ+ϵ
where y = (y1, ..., yn)

⊤, µ = (µ(x1), ..., µ(xn))
⊤, and ϵ = (ϵ1, ..., ϵn)

⊤.
Our job is simple: predict yi with xi using a linear model. However, how

do we know which of k the inputs of xi should we put in our model? That is, we
want to find a way to measure how the good the prediction of a specific model
would be.

Let A ⊆ {1, ..., k} with |A| = p denote a subset of the indices of size p
and let XA denote the corresponding data matrix (x1A, ..., xnA)

⊤. That is, A
denotes the subset of the k independent variables we choose to put in our model.
The standard Ordinary Least Square (OLS) estimator yields the estimator β̂A =
(X⊤

AXA)
−1X⊤

Ay. An intuitive way of measuring prediction quality is to consider
the expected sum of square errors:

E
[

n∑
i=1

(yi − x⊤
iAβ̂A)

2

]
= E(y − XAβ̂A)

⊤(y − XAβ̂A)

= nσ2 − pσ2 + µ⊤(In − PA)µ (in)

where PA = XA(X⊤
AXA)

−1X⊤
A and In is the n × n identity matrix. Notice the

term −pσ2. This term suggests that the prediction error decreases as p, the
size of A, increases. That is, we can keep adding inputs from the original k
independent variables to the linear model and the square error will decrease!
Therefore, this expected sum of squares error is not a good measure for how
good the model will perform.

However, notice this this is only the case when we are doing “in-sample”
prediction, i.e., evaluating sum of squares error with the data set that is used
to produce the estimate β̂A. We can consider calculating the prediction error
with a hypothetical out-sample data set, that is, a data set {yout

i , xi}ni=1 where

yout
i = µ(xi) + ϵout

i .

This hypothetical data set is essentially “a set of regenerated yi’s with the same
xi’s.” Using the new data set, we can compute the “out-sample” prediction error
associated with the “in-sample” estimate β̂A:

E
[

n∑
i=1

(yout
i − x⊤

iAβ̂A)
2

]
= E(yout − XAβ̂)

⊤(yout − XAβ̂A)

= nσ2 + pσ2 + µ⊤(In − PA)µ. (out)

Page 1 of 2

https://jessekelighine.com


Notice how the out-sample prediction error increases as p, number of indepen-
dent variables in our model, increases. Hence, out-sample prediction error is a
much better criterion for evaluating the fitness of a model.

Now the practical question: How can we calculate the “out-sample predic-
tion error” when we only observe one data set? The trick is to approximate the
out-sample prediction error with the in-sample prediction error. In fact, (in)
and (out) are related by the simple equation

(out) = (in) + 2pσ2. (1)

The term 2pσ2 can be viewed as an error correction term to (in). We can replace
σ2 by some estimator σ̂2 to obtain an estimate of (out). And that’s basically it!

∗ ∗ ∗

Formally, Cp is defined as follows: Suppose we have data {yi, xi}ni=1 as before,
and we pick p of the k exogenous variables from xi to calculate the linear model
coefficients β, denoted by β̂A. The Mallows’ Cp for that choice of p variables is
defined by

Cp :=
1

n

(
n∑

i=1

(yi − x⊤
iAβ̂A)

2 + 2pσ̂2

)
(2)

It is clear that (2) is simply (1) divided by n. The Cp values for different choices
of A tell us how the fitness of these models differ. The choice of A with the
smallest Cp is the most preferable. #
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