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1 Motivation

Let X be a finite sample space, and let X be a random variable with P as the induced
probability measure on X. How much information does X carry? We can approach
this question as follows: If we encode each possible outcome in & using a given set of
symbols, on average, what is the number of symbols required to represent a realization
of X7

Example 1. Suppose we have a rigged six-sided die with the following probabilities
and encoding in binary (two symbols):

Face Probability Encoding

©J 80% 1
) 10% 01
I 2.5% 0011
B 2.5% 0010
2.5% 0001
2.5% 0000

Since it is highly probable that (] will occur, it is efficient to assign it a short codeword.
Under this scheme, 1.4 bits is expected to encode an outcome since

0.8 X 1 bit 4 0.1 x 2 bits + (0.025 x 4 bits) x 4 = 1.4 bits.

If the die is so rigged that only (-] ever occurs, then the die carries no information, as
the outcome is entirely predictable. In this case, the required encoding length would
be 0 bits.

In the following sections, we will formalize this idea of information through en-
coding and derive Shannon entropy as a quantitative measure of information.

2 Code Function

Definition 1 (d-ary Code Function). A d-ary code function C maps z € X to
a finite string, denoted by C(z), consisting of d distinct symbols. The output of
C is referred to as the codeword. Codewords can have different lengths and let
lc(z) denote the length of the codeword used to encode = € X.

Remark 1. For any d-ary code function C to be considered reasonable, it must allow
the encoded message to be decoded unambiguously. This requires certain properties
to hold, as defined below.

Definition 2 (Non-singular). A d-ary code function C is non-singular if for all
xz,x’ € X, we have C(z) = C(2') iff z = 2'.

*This introduction draws heavily from lecture note Duchi (2024), Chapter 2.
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Figure 1: Prefix Tree: Dice.

Definition 3 (Uniquely Decodable). A d-ary code function C is uniquely decod-
able if for all sequences 1, ...,z, € X and 2}, ..., 2!, € X, we have

C(z1)---Clxy) = C(xy)---Cla)) iff z=2),...2, =2/

n n*

That is, there is no ambiguity in any encoded sequences.

Remark 2. If a code function is uniquely decodable, then it must be non-singular,
but not the other way round. A particularly useful type of uniquely decodable code
is the prefix code.

3 Prefix Code

Definition 4 (Prefix Code). A d-ary code function C is said to be a prefiz code
if fic, ¢’ € {C(x)},ex such that ¢ starts with e. That is, no whole codeword is a
prefix of any other codeword.

Remark 3. Since no codeword is the start of any other codeword, a prefix code can
be represented by a graph called prefix tree. And there is a one-to-one correspondence
between prefix trees and prefix codes. The encoding given in Example 1 is a prefix
code and the corresponding prefix tree is shown in Figure 1.

I Lemma 1. Any prefix code is uniquely decodable.

Proof. This should be pretty obvious with the prefix tree representation. |

Remark 4. Prefix codes are among the simplest uniquely decodable codes to work
with. While there are other uniquely decodable encoding schemes, prefix codes are
special because of the Kraft-McMillan Inequality.

Theorem 1 (Kraft-McMillan Inequality). Let & be a finite set, and let £ : X —
N be a function. If ¢(z) is the length of the encoding of the element z in a uniquely
decodable d-ary, then

y dat <1
reX

Conversely, given any function ¢ : X — N that satisfies the inequality above, there
exists a prefix code C such that {c(z) = {(z) Vo € X.
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Proof. First suppose that |X| < co. Let fpax = max,ecx £(x) denote the longest
codeword. Let z1., == (z1,...,2,) € X™. Define the notation

En(m) = {wlm : E(.’L‘l;n) = m}

where ((21.,) = Y i {(x;). That is, E,,(m) denotes the set of strings of n elements
in X that is encoded with m symbols. Clearly, we have £(x1.,) < nlpax, and by
unique decodability, we must have |E,(m)| < d™. Consider the following rewriting
of the sum for any fixed n:

nlmax nlmax

> dtmn) = Z |En(m)|d™™ < Z d"d™™ = nhpay.

T1n€EX™

We can rewrite the sum in another way:

—£(x1.n) — —5(321)_ e(xn) £(x) '
> d > d > d- .

T1in EXT T1:n €X' rEX

Hence, for all n we have

1/n
Zd“ﬂv)( > d“m)) < (nlmax) /™.

reX T1.n €EXT

Taking inf, ¢y on both sides and we obtain the inequality.

Now consider the converse. WLOG, let elements of X be a consecutive subset
of N such that ¢(z) < {(y) Vo < y starting from 1. We place all the elements in a
d-ary prefix tree as follows: First, place 1 € X at a node of depth ¢(1) and prune all
the descendants from that node. This means that for an arbitrary n € X, there are
d“m=t() nodes of depth £(n) removed from the pruning. Then, we place 2 € X at
a node of depth ¢(2), removing d*» =2 nodes of depth ¢(n) from the prefix tree.
This process continues until n € & is placed in the tree. Note that this process
never removes more nodes than there are available to us at any point n since the
Kraft-McMillan Inequality holds:

n

Z dl(n)—é(z d((n) Z d (4) < d@(n)

i=1
Therefore, a prefix tree, hence a prefix code, can always be constructed by this method.
[

Remark 5. The Kraft-McMillan Inequality characterizes unique decodability. Fur-
thermore, it shows that we can always re-encode a uniquely decodable code function
using a prefix code.

4 Entropy as Information

Definition 5 (Shannon Entropy). Let X be a random variable with sample
space X. Define Shannon entropy as

— > P(x)log, P(x)

TeX

where P is the probability measure induced by X on X
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Remark 6. Note the negative sign in Hg(X). Since log P(z) is always non-positive,
the negative sign keeps the entire thing non-negative. And by convention, for any
x € X such that P(z) =0, we define P(x)log, P(x) = 0.

Remark 7. It turns out that the minimal average length of a codeword necessary to
encode X is given by Hy(X). This result is called Shannon’s Source Coding Theorem.

Theorem 2 (Shannon’s Source Coding Theorem). Let X be a random variable
with sample space X. Let C denote the set of all possible uniquely decodable
d-ary code functions for X. Then

Hy(X) < inf Blc(X) < Ha(X) +1
&

where P is the probability measure induced by X on X and E denotes the ex-
pectation operator.

Proof. By Kraft-McMillan Inequality, solving infcee E £c(X) is equivalent to solving

i ; —L(z)
Hl}f Z P(x)l(xz) subject to Z d <1
TEX zeEX

This can be done by setting up and solving the Lagrangian:

L= Z P(z)l(x) + A (1 - Z df(@) — P(z) - A log(d) = 0 Va

TEX zeEX
= {(z) = —log, P(z).

Thus, the lower bound is obtained. For the upper bound, let ¢(z) = [—log, P(z)].
Note that this £ satisfies Kraft-McMillan Inequality, hence a prefix code can be con-
structed. Therefore, we have

E((X) =) P(z)[-loggP(z)] < Y P(a)(~loggP(z)) + 1 = Ha(X) + 1,
TEX TEX

obtaining the upper bound. |

Remark 8. For the rigged die in Example 1 the entropy is about 1.12 bits. Our
encoding scheme achieves an expected length of 1.4 bits, which is close to the theo-
retical limit. There are also an asymptotic version of this theorem: If we observe a
stationary sequence X1, Xo, ..., then we can re-encode the X;’s in blocks. This way
the expected length of encoding can be arbitrarily close to its entropy. One can refer
to Duchi (2024), Chapter 2 for the proof.
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