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1 Motivation

Let X be a finite sample space, and let X be a random variable with P as the induced
probability measure on X . How much information does X carry? We can approach
this question as follows: If we encode each possible outcome in X using a given set of
symbols, on average, what is the number of symbols required to represent a realization
of X?

Example 1. Suppose we have a rigged six-sided die with the following probabilities
and encoding in binary (two symbols):

Face Probability Encoding
80% 1
10% 01
2.5% 0011
2.5% 0010
2.5% 0001
2.5% 0000

Since it is highly probable that will occur, it is efficient to assign it a short codeword.
Under this scheme, 1.4 bits is expected to encode an outcome since

0.8× 1 bit + 0.1× 2 bits + (0.025× 4 bits)× 4 = 1.4 bits.

If the die is so rigged that only ever occurs, then the die carries no information, as
the outcome is entirely predictable. In this case, the required encoding length would
be 0 bits.

In the following sections, we will formalize this idea of information through en-
coding and derive Shannon entropy as a quantitative measure of information.

2 Code Function

Definition 1 (d-ary Code Function). A d-ary code function C maps x ∈ X to
a finite string, denoted by C(x), consisting of d distinct symbols. The output of
C is referred to as the codeword. Codewords can have different lengths and let
ℓC(x) denote the length of the codeword used to encode x ∈ X .

Remark 1. For any d-ary code function C to be considered reasonable, it must allow
the encoded message to be decoded unambiguously. This requires certain properties
to hold, as defined below.

Definition 2 (Non-singular). A d-ary code function C is non-singular if for all
x, x′ ∈ X , we have C(x) = C(x′) iff x = x′.

∗This introduction draws heavily from lecture note Duchi (2024), Chapter 2.
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Figure 1: Prefix Tree: Dice.

Definition 3 (Uniquely Decodable). A d-ary code function C is uniquely decod-
able if for all sequences x1, ..., xn ∈ X and x′

1, ..., x
′
n ∈ X , we have

C(x1) · · ·C(xn) = C(x′
1) · · ·C(x′

n) iff x1 = x′
1, ..., xn = x′

n.

That is, there is no ambiguity in any encoded sequences.

Remark 2. If a code function is uniquely decodable, then it must be non-singular,
but not the other way round. A particularly useful type of uniquely decodable code
is the prefix code.

3 Prefix Code

Definition 4 (Prefix Code). A d-ary code function C is said to be a prefix code
if ∄c, c′ ∈ {C(x)}x∈X such that c′ starts with c. That is, no whole codeword is a
prefix of any other codeword.

Remark 3. Since no codeword is the start of any other codeword, a prefix code can
be represented by a graph called prefix tree. And there is a one-to-one correspondence
between prefix trees and prefix codes. The encoding given in Example 1 is a prefix
code and the corresponding prefix tree is shown in Figure 1.

Lemma 1. Any prefix code is uniquely decodable.

Proof. This should be pretty obvious with the prefix tree representation. ■

Remark 4. Prefix codes are among the simplest uniquely decodable codes to work
with. While there are other uniquely decodable encoding schemes, prefix codes are
special because of the Kraft-McMillan Inequality.

Theorem 1 (Kraft-McMillan Inequality). Let X be a finite set, and let ℓ : X →
N be a function. If ℓ(x) is the length of the encoding of the element x in a uniquely
decodable d-ary, then ∑

x∈X
d−ℓ(x) ≤ 1.

Conversely, given any function ℓ : X → N that satisfies the inequality above, there
exists a prefix code C such that ℓC(x) = ℓ(x) ∀x ∈ X .
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Proof. First suppose that |X | < ∞. Let ℓmax := maxx∈X ℓ(x) denote the longest
codeword. Let x1:n := (x1, ..., xn) ∈ Xn. Define the notation

En(m) := {x1:n : ℓ(x1:n) = m}

where ℓ(x1:n) =
∑n

i=1 ℓ(xi). That is, En(m) denotes the set of strings of n elements
in X that is encoded with m symbols. Clearly, we have ℓ(x1:n) ≤ nℓmax, and by
unique decodability, we must have |En(m)| ≤ dm. Consider the following rewriting
of the sum for any fixed n:

∑
x1:n∈Xn

d−ℓ(x1:n) =

nℓmax∑
m=1

|En(m)|d−m ≤
nℓmax∑
m=1

dmd−m = nℓmax.

We can rewrite the sum in another way:

∑
x1:n∈Xn

d−ℓ(x1:n) =
∑

x1:n∈Xn

d−ℓ(x1) · · · d−ℓ(xn) =

(∑
x∈X

d−ℓ(x)

)n

.

Hence, for all n we have

∑
x∈X

d−ℓ(x) =

( ∑
x1:n∈Xn

d−ℓ(x1:n)

)1/n

≤ (nℓmax)
1/n.

Taking infn∈N on both sides and we obtain the inequality.
Now consider the converse. WLOG, let elements of X be a consecutive subset

of N such that ℓ(x) ≤ ℓ(y) ∀x ≤ y starting from 1. We place all the elements in a
d-ary prefix tree as follows: First, place 1 ∈ X at a node of depth ℓ(1) and prune all
the descendants from that node. This means that for an arbitrary n ∈ X , there are
dℓ(n)−ℓ(1) nodes of depth ℓ(n) removed from the pruning. Then, we place 2 ∈ X at
a node of depth ℓ(2), removing dℓ(n)−ℓ(2) nodes of depth ℓ(n) from the prefix tree.
This process continues until n ∈ X is placed in the tree. Note that this process
never removes more nodes than there are available to us at any point n since the
Kraft-McMillan Inequality holds:

n∑
i=1

dℓ(n)−ℓ(i) = dℓ(n)
n∑

i=1

d−ℓ(i) ≤ dℓ(n).

Therefore, a prefix tree, hence a prefix code, can always be constructed by this method.
■

Remark 5. The Kraft-McMillan Inequality characterizes unique decodability. Fur-
thermore, it shows that we can always re-encode a uniquely decodable code function
using a prefix code.

4 Entropy as Information

Definition 5 (Shannon Entropy). Let X be a random variable with sample
space X . Define Shannon entropy as

Hd(X) := −
∑
x∈X

P(x) logd P(x)

where P is the probability measure induced by X on X .
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Remark 6. Note the negative sign in Hd(X). Since log P(x) is always non-positive,
the negative sign keeps the entire thing non-negative. And by convention, for any
x ∈ X such that P(x) = 0, we define P(x) logd P(x) = 0.

Remark 7. It turns out that the minimal average length of a codeword necessary to
encode X is given by Hd(X). This result is called Shannon’s Source Coding Theorem.

Theorem 2 (Shannon’s Source Coding Theorem). Let X be a random variable
with sample space X . Let C denote the set of all possible uniquely decodable
d-ary code functions for X . Then

Hd(X) ≤ inf
C∈C

E ℓC(X) ≤ Hd(X) + 1

where P is the probability measure induced by X on X and E denotes the ex-
pectation operator.

Proof. By Kraft-McMillan Inequality, solving infC∈C E ℓC(X) is equivalent to solving

inf
ℓ

∑
x∈X

P(x)ℓ(x) subject to
∑
x∈X

d−ℓ(x) ≤ 1.

This can be done by setting up and solving the Lagrangian:

L =
∑
x∈X

P(x)ℓ(x) + λ

(
1−

∑
x∈X

d−ℓ(x)

)
=⇒ P(x)− λd−ℓ(x) log(d) let

= 0 ∀x

=⇒ ℓ(x) = − logd P(x).

Thus, the lower bound is obtained. For the upper bound, let ℓ(x) = ⌈− logd P(x)⌉.
Note that this ℓ satisfies Kraft-McMillan Inequality, hence a prefix code can be con-
structed. Therefore, we have

E ℓ(X) =
∑
x∈X

P(x)⌈− logd P(x)⌉ ≤
∑
x∈X

P(x)(− logd P(x)) + 1 = Hd(X) + 1,

obtaining the upper bound. ■

Remark 8. For the rigged die in Example 1 the entropy is about 1.12 bits. Our
encoding scheme achieves an expected length of 1.4 bits, which is close to the theo-
retical limit. There are also an asymptotic version of this theorem: If we observe a
stationary sequence X1, X2, ..., then we can re-encode the Xi’s in blocks. This way
the expected length of encoding can be arbitrarily close to its entropy. One can refer
to Duchi (2024), Chapter 2 for the proof.
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