Sufficient Statistic

Definition 1 (Statistical Experiment). A statistical experiment is a triple $(\mathcal{X}, \mathcal{F}, \{\mathbf{P}_{\theta}\}_{\theta \in \Theta})$ where \mathcal{X} is the sample space, \mathcal{F} is a σ -algebra on \mathcal{X} , and $\{\mathbf{P}_{\theta}\}_{\theta \in \Theta}$ is a collection of of probability measures on \mathcal{X} parametrized by θ in the parameter space Θ .

Definition 2 (Sufficient Statistic). Let $(\mathcal{X}, \mathcal{F}, \{\mathbf{P}_{\theta}\}_{\theta \in \Theta})$ be an statistical experiment. Let a measurable function $T : (\mathcal{X}, \mathcal{F}) \to (\mathcal{T}, \mathcal{G})$ be a statistic. The statistic T is said to be sufficient if $\mathbf{P}_{\theta}(\cdot | T)$ does not depend on θ .

Example 1. Consider an experiment $(\mathcal{X}, \mathcal{F}, \{\mathbf{P}_{\theta}\}_{\theta \in [0,1]})$ where $\mathcal{X} = \{0,1\}^n$, \mathcal{F} is the power set of \mathcal{X} , and \mathbf{P}_{θ} is the joint distribution of n iid Bernoulli (θ) distributions. Define statistic $T(x) \coloneqq \sum_{i=1}^{n} x_i$ where x_i denotes the *i*-th component of x. We check that T is a sufficient statistic: Given any $x \in \mathcal{X}$, let $t \coloneqq T(x)$ and we have

$$\mathbf{P}_{\theta}\{X = x \,|\, T = t\} = \frac{\mathbf{P}_{\theta}\{X = x\}}{\mathbf{P}_{\theta}\{T = t\}} = \frac{\prod_{i=1}^{n} \theta^{x_i} (1-\theta)^{1-x_i}}{\binom{n}{t} \theta^t (1-\theta)^{n-t}} = \binom{n}{t}^{-1}.$$

Since the conditional distribution does not depend on θ , T is a sufficient statistic.

Theorem 1 (Fisher-Neyman Factorization). Consider a statistical experiment $(\mathcal{X}, \mathcal{F}, \{\mathbf{P}_{\theta}\}_{\theta \in \Theta})$. A statistic $T : (\mathcal{X}, \mathcal{F}) \to (\mathcal{T}, \mathcal{G})$ is a sufficient statistic iff there exists measurable functions $\{g_{\theta}\}_{\theta \in \Theta}$ defined on $(\mathcal{T}, \mathcal{G})$ and h defined on $(\mathcal{X}, \mathcal{F})$ such that the probability density function can be decomposed as

$$f(x \mid \theta) = g_{\theta}(T(x))h(x).$$
(1)

Proof. We only show the proof for discrete random variables. ¹ In this case, we have the probability density function $f(x | \theta) = \mathbf{P}_{\theta} \{X = x\}$.

 (\Rightarrow) Suppose that T is sufficient. Given any realization $x \in \mathcal{X}$, let $t \coloneqq T(x)$ and we have the following

$$\mathbf{P}_{\theta}\{X = x\} = \mathbf{P}_{\theta}\{X = x, T = t\}$$
$$= \mathbf{P}_{\theta}\{X = x \mid T = t\} \mathbf{P}_{\theta}\{T = t\}$$
$$= \underbrace{\mathbf{P}\{X = x \mid T = t\}}_{h(x)} \underbrace{\mathbf{P}_{\theta}\{T = t\}}_{q_{\theta}(t)}$$

where the last equality is obtained by the definition of sufficiency.

(\Leftarrow) Suppose we have the factorization (1). Given any realization $x \in \mathcal{X}$, let $t \coloneqq T(x)$ and we have

$$\mathbf{P}_{\theta}\{X = x \mid T = t\} = \frac{\mathbf{P}_{\theta}\{X = x, T = t\}}{\mathbf{P}_{\theta}\{T = t\}}$$
$$= \frac{g_{\theta}(t)h(x)}{\mathbf{P}_{\theta}\{T = t\}}$$

¹For continuous random variables, one must deal with measure-theoretic technicalities in the proof. One can find a proof for general random variables in *Chapter 2.2 Statistics and Sufficiency* from [1].

where the second equality is obtained by using the factorization on the numerator. Now consider the denominator, we have

$$\mathbf{P}_{\theta}\{T=t\} = \sum_{x':T(x')=t} \mathbf{P}_{\theta}\{X=x'\} = \sum_{x':T(x')=t} g_{\theta}(t)h(x')$$

where the second equality is obtained by factorization. Substitute the result back and we have

$$\mathbf{P}_{\theta}\{X = x \mid T = t\} = \frac{g_{\theta}(t)h(x)}{\sum_{x':T(x')=t} g_{\theta}(t)h(x')}$$
$$= \frac{h(x)}{\sum_{x':T(x')=t} h(x')}$$

where the final expression does not depend on θ . Hence T is a sufficient statistic for θ . #

Example 2 (Example 1 Continued). Now we check that $T(x) = \sum_{i=1}^{n} x_i$ is a sufficient statistic using Theorem 1:

$$\mathbf{P}_{\theta}\{X=x\} = \prod_{i=1}^{n} \theta^{x_i} (1-\theta)^{1-x_i} = \underbrace{\theta^{T(x)} (1-\theta)^{n-T(x)}}_{g_{\theta}(T(x))}.$$

In this case, h(x) = 1 is a constant function. Hence, T is a sufficient statistic.

Definition 3 (Sufficiency Principle). Let $(\mathcal{X}, \mathcal{F}, \{\mathbf{P}_{\theta}\}_{\theta \in \Theta})$ be a statistical experiment and let T be a sufficient statistic. The sufficiency principle states that inference about θ should depend only on T. That is, if two samples x and x' satisfies T(x) = T(x'), then they should lead to the same inference about θ .

Remark 1. The concept of sufficient statistic and the sufficiency principle are both due to Sir Ronald Fisher in the early 20th century.

References

 Jun Shao. Mathematical Statistics. New York: Springer, 1999. ISBN: 0-387-98674-X.