Sufficient Statistic 2024-07-31

Definition 1 (Statistical Experiment)**.** *A* statistical experiment *is a triple* $(\mathcal{X}, \mathcal{F}, {\{P_\theta\}}_{\theta \in \Theta})$ where X is the sample space, F is a σ [-algebra on](https://jessekelighine.com) X, and ${P_{\theta}}$ *θ* $_{\theta \in \Theta}$ *is a collection of of probability measures on X* parametrized by θ *in the parameter space* Θ*.*

Definition 2 (Sufficient Statistic). Let $(\mathcal{X}, \mathcal{F}, {\{P_\theta\}_{\theta \in \Theta}})$ be an statistical ex*periment.* Let a measurable function $T : (\mathcal{X}, \mathcal{F}) \to (\mathcal{T}, \mathcal{G})$ be a statistic. The *statistic T is said to be sufficient if* $P_{\theta}(\cdot | T)$ *does not depend on* θ *.*

Example 1. *Consider an experiment* $(\mathcal{X}, \mathcal{F}, {\{P_\theta\}}_{\theta \in [0,1]})$ *where* $\mathcal{X} = \{0,1\}^n$, *F* is the power set of *X*, and P_θ is the joint distribution of *n* iid Bernoulli(θ) distributions. Define statistic $T(x) \coloneqq \sum_{i=1}^{n} x_i$ where x_i denotes the *i*-th com*ponent of x.* We check that *T* is a sufficient statistic: Given any $x \in \mathcal{X}$, let $t := T(x)$ *and we have*

$$
\mathbf{P}_{\theta}\{X=x \,|\, T=t\} = \frac{\mathbf{P}_{\theta}\{X=x\}}{\mathbf{P}_{\theta}\{T=t\}} = \frac{\prod_{i=1}^{n} \theta^{x_i} (1-\theta)^{1-x_i}}{\binom{n}{t} \theta^{t} (1-\theta)^{n-t}} = \binom{n}{t}^{-1}.
$$

Since the conditional distribution does not depend on θ , *T* is a sufficient statistic.

Theorem 1 (Fisher-Neyman Factorization)**.** *Consider a statistical experiment* $(\mathcal{X}, \mathcal{F}, {\{P_\theta\}}_{\theta \in \Theta})$. A statistic $T : (\mathcal{X}, \mathcal{F}) \to (\mathcal{T}, \mathcal{G})$ is a sufficient statistic iff there *exists measurable functions* $\{g_{\theta}\}_{\theta \in \Theta}$ *defined on* $(\mathcal{T}, \mathcal{G})$ *and h defined on* $(\mathcal{X}, \mathcal{F})$ *such that the probability density function can be decomposed as*

$$
f(x | \theta) = g_{\theta}(T(x))h(x).
$$
 (1)

Proof. We only show the proof for discrete random variables. $\frac{1}{1}$ In this case, we have the probability density function $f(x | \theta) = \mathbf{P}_{\theta} \{X = x\}$.

(⇒) Suppose that *T* is sufficient. Given any realization $x \in \mathcal{X}$, let $t := T(x)$ and we have the following

$$
\mathbf{P}_{\theta}\{X=x\} = \mathbf{P}_{\theta}\{X=x, T=t\}
$$

$$
= \mathbf{P}_{\theta}\{X=x | T=t\} \mathbf{P}_{\theta}\{T=t\}
$$

$$
= \underbrace{\mathbf{P}\{X=x | T=t\}}_{h(x)} \underbrace{\mathbf{P}_{\theta}\{T=t\}}_{g_{\theta}(t)}
$$

where the last equality is obtained by the definition of sufficiency.

(←) Suppose we have the factorization (1). Given any realization $x \in \mathcal{X}$, let $t := T(x)$ and we have

$$
\mathbf{P}_{\theta}\{X = x | T = t\} = \frac{\mathbf{P}_{\theta}\{X = x, T = t\}}{\mathbf{P}_{\theta}\{T = t\}}
$$

$$
= \frac{g_{\theta}(t)h(x)}{\mathbf{P}_{\theta}\{T = t\}}
$$

 1 For continuous random variables, one must deal with measure-theoretic technicalities in the proof. One can find a proof for general random variables in *Chapter 2.2 Statistics and Sufficiency* from [1].

where the second equality is obtained by using the factorization on the numerator. Now consider the denominator, we have

$$
\mathbf{P}_{\theta}\{T=t\} = \sum_{x':T(x')=t} \mathbf{P}_{\theta}\{X=x'\} = \sum_{x':T(x')=t} g_{\theta}(t)h(x')
$$

where the second equality is obtained by factorization. Substitute the result back and we have

$$
\mathbf{P}_{\theta}\{X = x | T = t\} = \frac{g_{\theta}(t)h(x)}{\sum_{x':T(x')=t} g_{\theta}(t)h(x')}
$$

$$
= \frac{h(x)}{\sum_{x':T(x')=t} h(x')}
$$

where the final expression does not depend on θ . Hence *T* is a sufficient statistic for θ . #

Example 2 (Example 1 Continued). *Now we check that* $T(x) = \sum_{i=1}^{n} x_i$ *is a sufficient statistic using Theorem 1:*

$$
\mathbf{P}_{\theta}\{X=x\} = \prod_{i=1}^{n} \theta^{x_i} (1-\theta)^{1-x_i} = \underbrace{\theta^{T(x)} (1-\theta)^{n-T(x)}}_{g_{\theta}(T(x))}.
$$

In this case, $h(x) = 1$ is a constant function. Hence, T is a sufficient statistic.

Definition 3 (Sufficiency Principle). Let $(\mathcal{X}, \mathcal{F}, {\{P_\theta\}}_{\theta \in \Theta})$ be a statistical ex*periment and let T be a sufficient statistic. The* sufficiency principle *states that inference about* θ *should depend only on T. That is, if two samples x* and x' satisfies $T(x) = T(x')$, then they should lead to the same inference about θ .

Remark 1. *The concept of sufficient statistic and the sufficiency principle are both due to Sir Ronald Fisher in the early 20th century.*

References

[1] Jun Shao. *Mathematical Statistics*. New York: Springer, 1999. isbn: 0-387- 98674-X.