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1 Measure Preserving System and Ergodicity

Definition 1 (Measure Preserving System). A Measure Preserving System
(MPS) is a quadruple (Ω,B, µ,T) where (Ω,B, µ) is a measure space, and

1. T : Ω → Ω is a measurable transformation,

2. µ is T-invariance, i.e., µ(T−1E) = µ(E) ∀E ∈ B.

If µ is a probability measure, then the quadruple is called a Probability Preserving
System (PPS).

Remark 1. The transformation T need not be rigid body motions when Ω = Rn.
Consider dividing up Rn by grids into blocks and a transformation T that shuffles the
blocks around. This is clearly a MPS when the space is equipped with Borel σ-algebra
and Lebesgue measure.

Definition 2 (Ergodic). An PPS (Ω,B, µ,T) is said to be ergodic if E ∈ B is
T-invariant, i.e., E = T−1(E), then either µ(E) = 0 or µ(E) = 1.
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(a) Ergodic: well-mixed

1

2
3

4
5

(b) Non-ergodic: not well-mixed

Figure 1: Ergodic v.s. Non-ergodic PPS.

Remark 2. An ergodic PPS is a system in which the only T-invariant subspaces are
either negligible (measure zero) or the entire space itself. That is, an ergodic PPS is a
system that is “well-mixed.” In Figure 1, two systems are shown where Ω = {1, ..., 5}
and transformation T is denoted by arrows. In Figure 1b, there are two non-trivial
T-invariant subspaces that does not “mix” with each other; whereas in Figure 1a,
every element in Ω are “mixed” with each other.

Lemma 1. Let (Ω,B, µ,T) be an PPS, then the following are equivalent:

1. the PPS is ergodic,

2. if E ∈ B and µ(E△T−1E) = 0, then either µ(E) = 0 or µ(E) = 1,

3. if f : Ω → R is measurable and f ◦ T = f a.e., then f is constant a.e.

∗This Introduction draws heavily from lecture note Sarig, 2023.
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Proof. We show (1. =⇒ 2.), (2. =⇒ 3.), and (3. =⇒ 1.) respectively.

• (1. =⇒ 2.) Suppose there is a set E0 ∈ B such that E0 = T−1E0 and
µ(E△E0) = 0. By ergodicity, we have µ(E0) = 0 or µ(Ω − E0) = 0. And
since µ(E△E0) = 0 implies µ(E) = µ(E0), we have µ(E) = 0 or µ(Ω−E) = 0.

Now we construct E0. Consider the set E0 = {ω ∈ Ω : T−k(ω) ∈
E i.o.}. Clearly, E0 is measurable and T-invariant. Also, we have E△E0 ⊆⋃

k≥1 E△T−kE. Hence, we have

µ(E△E0) ≤
∑
k≥1

µ(E△T−kE)

≤
∑
k≥1

k−1∑
j=0

µ(T−jE△T−(j+1)E) =
∑
k≥1

kµ(E△T−1E)

where the last inequality is obtained by the fact that

µ(A1△A2) ≤ µ(A1△A3) + µ(A3△A2)

for all Ai ∈ B. Since µ(E△T−1E) = 0, we have that µ(E△E0) = 0.

• (2. =⇒ 3.) Let f be a measurable function s.t. f ◦ T = f a.e. For any y ∈ R,
we have [f > y]△T−1[f > y] ⊆ [f ̸= f ◦ T], hence

µ([f > y]△T−1[f > y]) = 0.

By the assumption, either µ[f > y] = 0 or µ[f ≤ y] = 0, i.e., either f > y a.e.
or f ≤ y a.e. Let c := sup{y ∈ R : f > y a.e.}, then f = c a.e.

• (3. =⇒ 1.) Let E ∈ B satisfies E = T−1(E). Consider f = 1E . Since f ◦T = f ,
f is constant a.e., we have f = 0 a.e. or f = 1 a.e., implying that either µ(E) = 0
or µ(E) = 1. #

Remark 3. The third characterization is quite interesting and intuitive. Consider
again Figure 1b, where the PPS is equipped with probability space Ω = {1, ..., 5},
B = 2Ω, and uniform µ. We can define the function f as follows:

f(ω) =

{
0 if ω ∈ {1, 2, 3},
1 otherwise.

It is clear that f ◦ T = f , but f is not constant on Ω. This is achievable since
non-ergodicity means there are non-trivial T-invariant subspaces, and we can simply
define f to be constant on each subspace. However, in Figure 1a, since the system is
“well-mixed,” this trick is not possible.

Definition 3 (Strong Mixing). An PPS (Ω,B, µ,T) is called strong mixing if for
any E,F ∈ B we have

µ(E ∩ T−nF ) → µ(E)µ(F ) as n → ∞.

Remark 4. The fact that strong mixing is defined using the inverse map of T is not
merely due to measure-theoretic technicalities. The interpretation is “no matter what
obscure events F one chooses, it could have been from all over in the system entirely
randomly, not just some specific part.” Thus, for any other event E, the “origins” of
F must be as if independent of E.
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Lemma 2. Strong mixing implies ergodicity.

Proof. Suppose (Ω,B, µ,T) is strong mixing. Let E be such that E = T−1E, then we
have

µ(E) = µ(E ∩ T−nE) → µ(E)2 as n → ∞.

Clearly, µ(E) = µ(E)2 implies µ(E) is either 0 or 1. #

2 Ergodicity Theorem

Theorem 1 (von Neumann’s Ergodicity). Let H be a Hilbert space. Let U :
H → H be a unitary operator. Let I = {f ∈ H : Uf = f} denote the U-invariant
subspace. Let P : H → I be the orthogonal projection onto I. Then, for any
f ∈ H, we have

1

n

n∑
i=1

Uif → Pf as n → ∞ (1)

in the norm induced by the inner product on H.

Proof. Clearly, Equation 1 holds when f ∈ I. Let J := {g − Ug : g ∈ H}. Suppose
f ∈ J , we have

⟨f, h⟩ = ⟨g, h⟩ − ⟨Ug, h⟩ = ⟨g, h⟩ − ⟨g,Uh⟩ = 0 ∀h ∈ I.
Hence, Pf = 0. Furthermore, we have∥∥∥∥∥ 1n

n∑
i=1

Uif

∥∥∥∥∥
2

=
1

n

∥∥Ug − Un+1g
∥∥
2
≤ 1

n
∥2g∥2 → 0 as n → ∞.

Therefore, Equation 1 holds for J .
We claim that Equation 1 also holds for the closure of J , denoted by J̄ . Suppose

f ∈ J̄ , then ∀ε > 0 ∃g ∈ J s.t. ∥f − g∥2 < ε. Choose N such that
∥∥ 1
n

∑n
i=1 Uig

∥∥
2
< ε

∀n > N . Then, we have∥∥∥∥∥ 1n
n∑

i=1

Uif

∥∥∥∥∥
2

≤

∥∥∥∥∥ 1n
n∑

i=1

Ui(f − g)

∥∥∥∥∥
2

+

∥∥∥∥∥ 1n
n∑

i=1

Uig

∥∥∥∥∥
2

≤ 2ε.

Thus, the claim holds.
Lastly, we claim that J̄⊥ = I. Suppose f ⊥ J̄ , we have that ∀g ∈ H,

0 = ⟨f, g − Ug⟩ = ⟨f, g⟩ − ⟨f,Ug⟩ =⇒ ⟨f, g⟩ = ⟨U∗f, g⟩.
This implies that f = Uf a.e., i.e., f ∈ I. Conversely, we have shown that if f ∈ J ,
then f ⊥ I. Hence, the claim holds. And since H = J̄ ⊕ I, Equation 1 holds for all
f ∈ H. #

Remark 5. If we think about Theorem 1 in linear algebra terms, it lends itself
to an intuitive understanding. In Figure 2, we consider R3 space with U being a
rotation along the z-axis. Clearly, a rotation is an unitary transformation, and its
corresponding invariant subspace is exactly the z-axis. Consider an arbitrary vector
f and its transformations Uif . As Uif rotates along the z-axis, it is clear that their
“average” converges to Pf , the orthogonal projection of f onto the z-axis. One can
also easily see that vectors of the form f − Uf is orthogonal to the z-axis.
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Figure 2: Visualization of Theorem 1.

Corollary 1.1. Let (Ω,B, µ,T) be an PPS. If f ∈ L2(Ω), then

1

n

n∑
i=1

f ◦ Ti L2

−→ f̄ as n → ∞

where f̄ ∈ L2(Ω) is T-invariant. Furthermore, if (Ω,B, µ,T) is ergodic, then

f̄ =

∫
Ω

f dµ.

Proof. Note that L2(Ω) is a Hilbert space. Let Uf := f ◦T. Since ∥f ◦ T∥2 = ∥f∥2 for
f ∈ L2(Ω), U is unitary. Hence, the statement is a direct implication of Theorem 1.
Furthermore, if the PPS is ergodic, then by Lemma 1, the T-invariant subspace I
contains only constant functions. Therefore, the orthogonal projection of f onto I is
its expectation. #

Remark 6. The sum still converges without ergodicity, but this is not very useful,
since we do not know the form of f̄ . With ergodicity, we know f̄ is a constant function.
Hence, we can simply pick any starting point ω ∈ Ω and compute f ◦ Ti(ω) along
the way to obtain the same constant f̄ , without worrying about the entire functional
space.

3 Markov Chains under the Language of Ergodicity

Now we want to rephrase what we already understand about Markov chains under
the language of von Neumann’s Ergodicity Theorem.

Definition 4 (Subshift of Finite Type). Let S with be a finite set of states.
Let A = (Aij)S×S be a adjacency matrix with Aij ∈ {0, 1} and without rows or
columns be entirely zero. Let ΩA be defined as the space of possible sequences

ΩA := {ω = (ω0, ω1, ...) : Aωi,ωi+1 = 1 ∀i}.

A Subshift of Finite Type (SFT) with states S with adjacency matrix A is the
triple (ΩA, d,T) where d(ω, ω′) = 2− min{k:ωk ̸=ω′

k} is a metric and T(ω0, ω1, ...) =
(ω1, ω2, ...) is a shift transformation.
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Remark 7. The topology generated by the metric d(·, ·) is equivalent to the topology
generated by sets of the form

[s0, ..., sn−1] := {ω ∈ ΩA : ωi = si ∀i ∈ {0, ..., n− 1}}.

This form are sometimes referred to as “cylinders.” This is the product topology on
SN when S is given the discrete topology.

Remark 8. The space Ω is simply all possible sequencing of S that is permitted by
A. Consider again Figure 1, now with the arrows denoting the adjacency matrix A,
then Figure 1a and Figure 1b generates different ΩA’s. What we want next is a way
to say “how likely is any given sequence realized/observed.”

Definition 5 (Markov Measure). Given a transition matrix P, i.e., a matrix
with each row consisting weights summing to one, and a probability vector π, we
construct a measure µ by letting

µ[s0, ..., sn−1] := πs0Ps0s1 · · ·Psn−2sn−1
.

Remark 9. The definition of Markov measure extends to a unique probability mea-
sure on ΩA with product topology via Carathéodory extension theorem.

Lemma 3. µ is T-invariant iff π is stationary w.r.t. P.

Proof. Note that µ is T-invariant iff µ[·, s] = µ[s] ∀s = (s0, ..., sn−1). That is,∑
t∈S

πtPts0Ps0s1 · · ·Psn−2sn−1
= πs0Ps0s1 · · ·Psn−2sn−1

∀s

⇐⇒
∑
t∈S

πtPts0 = πs0 ∀s0 ∈ S. #

Remark 10. With Lemma 3, we established that the system corresponding to the
SFT is a measure preserving system as long as the Markov measure is constructed
with a stationary distribution. It remains to ask the question: When is such sys-
tem ergodic? When is such system strong mixing? From the intuition established
previously, we know that...

• Ergodic means that the system is “well-mixed,” i.e., all the states should be
able to be reached from any other state. This corresponds to the idea of irre-
ducibility.

• Strong mixing means that the “origin” of any set could be all over the system
entirely randomly, i.e., we shouldn’t observe a set that follows some path. This
corresponds to the idea of aperiodicity.

It would turn out that our intuitions are spot on in describing what kinds of SFT are
ergodic and strong mixing.

Definition 6 (Irreducible). A transition matrix P is called irreducible if ∀a, b ∈ S
∃s1, ..., sn−1 ∈ S s.t. Pa,s1 · · ·Psn−1,b > 0. We denote this as a

n−→ b.

Lemma 4. If P is irreducible, then gcd{n ∈ N : a
n−→ a} is independent of a.
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Proof. Suppose pa = gcd{n : a
n−→ a} and pb = gcd{n : b

n−→ b} for a, b ∈ S.
Since P is irreducible, we have a

m1−→ b
mb−→ b

m2−→ a for some m1,m2 ∈ N and
mb ∈ {n : b

n−→ b}. Since pa |m1 + mb + m2 and pb |mb, we must have pa | pb.
Similarly, we have pb | pa by swapping a and b. Therefore, pa = pb. #

Definition 7 (Period). The period of an P is gcd{n : a
n−→ a}. An irreducible

P is aperiodic if gcd{n : a
n−→ a} = 1.

Remark 11. Definition 7 is well-defined since Lemma 4 guarantees that as long as
P is irreducible, then the period is independent of state.

Theorem 2 (Ergodicity for Markov Chains). Let P be a transition matrix and
let Pn

ab denote the (a, b)-th element of Pn. Let π be a stationary distribution of
P. Then,

1. if P is irreducible, then as n → ∞,

1

n

n∑
i=1

Pn
ab → πb ∀a, b ∈ S.

2. if P is irreducible and aperiodic, then as n → ∞,

Pn
ab → πb ∀a, b ∈ S.

Proof. Omitted. See, e.g., Chapter 1.5 in Sarig, 2023 or Chapter 5.6 in Durrett, 2019
for a proof. #

Corollary 2.1. Let (ΩA,B, µ,T) be the PPS corresponding to the SFT (ΩA, d,T)
with Markov measure µ under transition matrix P. If P is irreducible, then the
PPS ergodic. Furthermore, if P is also aperiodic, then the PPS is strong mixing.

Proof. First, note that for all cylinders [a] = [a0, ..., ana−1] and [b] = [b0, ..., bnb−1]
and k > na, we have

µ([a] ∩ T−k[b]) = µ

 +
c∈Ck−na

[a, c, b]


= µ[a]

 ∑
c∈Ck−na

Pana−1,c0 · · ·Pck−na−1,b0

 µ[b]

πb0

= µ[a]µ[b]
Pk−na

ana−1,b0

πb0

(2)

where Cℓ := {c = (c0, ..., cℓ−1) : [a, c, b] ̸= ∅}. By Theorem 2, we have that

1

n

n∑
k=na+1

µ([a] ∩ T−k[b]) = µ[a]µ[b]
1

πb0

(
1

n

n∑
k=na+1

Pk−na

ana−1,b0

)
→ µ[a]µ[b].
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Now suppose that P is irreducible. Let E ∈ B be invariant, then ∃[a1], ..., [am]
s.t. µ(E△+m

j=1[aj ]) < ε. Since the collection of cylinders forms a semi-algebra, such
[a1], ..., [am] always exists. Then,

µ(E) = µ(E ∩ T−kE) =

m∑
i=1

m∑
j=1

µ([ai] ∩ T−k[aj ])± 2ε.

Taking average over k, by the fact we mentioned above, we have

µ(E) =

m∑
i=1

m∑
j=1

(
1

n

n∑
k

µ([ai] ∩ T−k[aj ])

)
± 2ε

→
m∑
i=1

m∑
j=1

µ[ai]µ[aj ]± 2ε =

(
m∑
i=1

µ[aj ]

)2

± 2ε = (µ(E)± ε)2 ± 2ε

as n → ∞. Therefore, take ε ↓ 0 and we have that µ(E) = µ(E)2, which implies
either µ(E) = 0 or µ(E) = 1. Hence, we have ergodicity.

Now suppose further that P is aperiodic. By Theorem 2 and (2), we have µ([a]∩
T−k[b]) → µ[a]µ[b] as k → ∞. By a similar argument with approximation using
cylinders, we obtain the desired result. #
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(b) Periodic

Figure 3: Markov Chains under different transition matrix P.

Remark 12. Figure 3 shows two Markov chains with same adjacency A but different
transition P. One can easily check both chains represented in Figure 3a and Figure 3b
share the same invariant distribution π = (0.5, 0.5) However, notice that Figure 3b has
period 2. Hence, Pn

11 converges to 0.5 in Figure 3a but fails to converge in Figure 3b.

Remark 13. Corollary 2.1 can be extended to an if-and-only-if statement. The
reverse statement can be proven using techniques similar to the proof of Corollary 2.1.

Acronyms

MPS Measure Preserving System. 1
PPS Probability Preserving System. 1, 2, 4, 6
SFT Subshift of Finite Type. 4–6
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