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Definition 1 (Instrument Variable (IV) Model). Data is of the form
{yt, xt, zt,wt}Tt=1 where yt is a scalar outcome variable, xt is a N × 1 vector
of potentially endogenous variable, zt is a K×1 vector of IV, wt is a R×1 vector
of exogenous control variables. The model assumes the (matrix) form

y
(T×1)

= X
(T×N)

β + W
(T×R)

γ + u
(T×1)

(1)

X
(T×N)

= Z
(T×K)

Π+ W
(T×R)

Φ+ v
(T×N)

(2)

y = (y1, ..., yT )
′, X = (x1, ..., xT )

′, W = (w1, ...,wT )
′, Z = (z1, ..., zT )′; u =

(u1, ..., uT )
′ and v = (v1, ..., vT )

′ are error terms; β, γ, Π, and Φ are parame-
ters. Equation 1 is the so-called structural equation and Equation 2 is a linear
projection, so-called first stage.

Remark 1. In most applications that appears on American Economic Review (AER),
according to Andrews, Stock, and Sun (2019), there is only one endogenous variable,
i.e., N = 1. We will focus on the case where N = 1 in this short note.

Remark 2. We do not focus on the control variables wt in this note. If zt is or-
thogonal to vt only after controlling wt, we can simply invoke Frisch-Waugh-Lovell
Theorem and redefined the problem so that wt do not appear in the model.

1 A Primer: Concentration Parameter

Let us consider the simplest finite sample analysis possible, derived by Rothenberg
(1984). This will provide us with some insight before diving into asymptotics.

Suppose that scalars ut and vt are drawn from independent and identically dis-
tributed (iid) bivariate normal distributions with Var(ut) = σ2

u , Var(vt) = σ2
v , and

Corr(ut, vt) = ρ. Also suppose that the instruments zt are non-stochastic and that
there are no controls wt. The Two Stage Least Square (2SLS) estimator of β is given
by

β̂2SLS :=
X′PZy
X′PZX

where PZ = Z(Z′Z)−1Z′ is the projection matrix of Z. The 2SLS estimator can be
rewritten as

β̂2SLS =
X′PZy
X′PZX = β0 +

Π′Z′u + v′PZu
Π′Z′ZΠ+ 2Π′Z′v + v′PZv

. (3)

We want to standardize the terms that appears in the right-hand side. Define the
following variables:

ζu :=
Π′Z′u√

σ2
uΠ

′Z′ZΠ
, ζv :=

Π′Z′v√
σ2

vΠ
′Z′ZΠ

, Svu :=
v′PZu
σvσu

, Svv :=
v′PZv
σ2

v
.

∗This note draws heavily from lecture note Shi (2012) and a talk given by Stock (2008). All
references are given at the end of this note.
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Figure 1: Finite Sample Distributions.
Source: Stock, Wright, and Yogo (2002). More detailed versions of these densities can be found in
Nelson and Startz (1990a) and Nelson and Startz (1990b).

The first two random variables, ζu and ζv, both follow standard normal distribution
with correlation ρ. The random variable Svu has mean ρ and variance 1+ρ2. Similarly,
Svv has mean 1 and variance 2. Note that all these four variables are independent of
sample size. We rewrite (3) as

µ(β̂2SLS − β) =

(
σu
σv

)
ζu + Svu/µ

1 + ζv/µ+ Svv/µ2
(4)

where µ2 := Π′Z′ZΠ/σ2
v is called the “concentration parameter.”

Remark 3. Note that sample size only enters in the equation via µ2 and not through
other variables. When µ2 is large, (4) behaves like a standard normal distribution.
Hence, one can view µ2 as the “effective” sample size. It is possible that the “effective”
sample size µ2 is small despite that the sample size T is large.

Remark 4. The concentration parameter µ2 is closely related to the commonly used
first-stage F -statistic. Recall that the first-stage F -statistic, used to test the linear
hypothesis H0 : Π = 0, is given by

F =
Π̂

′
(Z′Z)Π̂
Kσ̂2

v
(5)

where σ̂2
v is an estimator for σ2

v , commonly chosen to be v̂′v̂
N−K . One immediately sees

the connections between µ2 and (5). Furthermore, if we can calculate the F -statistic
with a known σ2

v , then we have

E
[
Π̂

′
(Z′Z)Π̂
Kσ2

v

]
= 1 +

µ2

K
.

If the first-stage F -statistic is large, then µ2/K is large, meaning that (4) would be
approximately normal. Hence, our usual inference, i.e., t-test, about β̂2SLS can be
carried through. (Stock, Wright, and Yogo 2002)

Remark 5. Combining Remark 3 and Remark 4, one can see that a small first-stage
F -statistic cannot be fixed with more samples. However, in classic IV analysis, one
assumes that Π is constant. Then, µ2 tends to infinity as T → ∞, regardless of how
small Π actually is. This is why classical IV asymptotic fails when instruments are
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weak, i.e., the textbook asymptotic result provides a poor approximation of the finite
sample distribution. This problem is really brought to attention of econometricians by
numerical simulations by Nelson and Startz (1990a) and Nelson and Startz (1990b),
in which they demonstrated that when the concentration parameter is small, then
the finite sample distribution 2SLS estimator and t-statistic are highly irregular, as
on can see in Figure 1.

2 Weak IV Asymptotics

Classic asymptotic results cannot capture the finite sample distribution of the 2SLS
estimator and the test statistic. Staiger and Stock (1997) provided an analysis, now
known as “weak IV asymptotics,” that successfully approximates the finite sample
features using asymptotic methods.1

The key to their asymptotic analysis is to model Π to be local to zero by in-
troducing a “drift” in the parameter Π towards 0 as T → ∞, as described in the
following assumption presented in Staiger and Stock (1997):2

Assumption LΠ. Π = ΠT = C/
√
T , where C is a fixed K ×N matrix.

In the following derivations, we still consider iid errors but relax the normality as-
sumption, since we are in the land of asymptotics. Also, we still assume that N = 1
for simplicity in our note. In Staiger and Stock (1997), they consider a general N .

Remark 6. In contrast to classic asymptotic analysis where F -statistic or µ2 tends to
infinity as sample size T tends to infinity, µ2 is held constant in weak IV asymptotics:

µ2 =
Π′

T Z′ZΠT

σ2
v

=
1

σ2
v

C′
(

Z′Z
T

)
C p−→ 1

σ2
v

C′QZZC

where it is (standard to) assumed that Z′Z/T converges in probability to a limit QZZ.

Under weak IV asymptotics, we have the limiting distribution3

β̂2SLS − β0
d−→
(
σu
σv

)
(λ+ ζv)

′ζu
(λ+ ζv)′(λ+ ζv)

(6)

where [
ζu
ζv

]
∼ N (0, Σ̄⊗ IK), Σ̄ =

[
1 ρ
ρ 1

]
, λ =

1

σv
Q1/2

ZZ C.

Compare (6) to (4), one can clearly see the similarities. Clearly, λ′λ is simply the
asymptotic version of µ2. Hence, under weak IV asymptotics, one captures the finite
sample features derived by Rothenberg (1984). Staiger and Stock (1997) also provided
weak IV asymptotics for the Wald statistic with k-class estimators. However, since
the asymptotic distributions all depend on λ and λ cannot be consistently estimated
under this particular asymptotic setting, the distributional results is of little use in
constructing tests.

1Other asymptotic analysis of weak instruments have been developed. For example, “many-
instrument asymptotics” is an asymptotic analysis that let the number of instruments K goes to
infinity. However, these kinds of asymptotics does not capture the non-normality shown in Figure 1.
A more detailed survey can be found in Stock, Wright, and Yogo (2002).

2This technique belongs to the family of local asymptotics. Specifically, this kind of “drifting” in
parameter is sometimes known as Pitman drift, a technique often used in power analysis of tests.
(Stock, Wright, and Yogo 2002)

3A detailed derivation can be found in Staiger and Stock (1997).
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Remark 7 (Relative Bias). Under weak IV asymptotics, then the mean of the asymp-
totic distribution of the 2SLS estimator is the same as the probability limit of the
Ordinary Least Squares (OLS) estimator. The probability limit of the OLS estimator
can be expressed as

β̂OLS = (X′X)−1X′y p−→ β0 +
σvu
σ2

v
.

Note that this result is identical to standard asymptotics with Π = 0. We can defined
the “relative bias” of the 2SLS estimator as follows and calculate its expectation

plim
T→∞

β̂2SLS − β0

β̂OLS − β0

=⇒ E
[

plim
T→∞

β̂2SLS − β0

β̂OLS − β0

]
= E

[
(λ+ ζv)

′ζv
(λ+ ζv)′(λ+ ζv)

]
.

Due to some properties of distributional form (see footnote 4 in Staiger and Stock
(1997)), the expected relative bias only depends on λ′λ/K and K.

Remark 8. Essentially, Staiger and Stock (1997) provided an asymptotic tool, in
contrast to previous attempts with finite samples, e.g., Rothenberg (1984), that makes
it easier to analyze weak IV. This asymptotic in itself is not very useful in practice,
that is, it does not provide any estimators or test.

Remark 9. One critical conclusion to draw from weak IV asymptotics is that β̂2SLS
is inconsistent, since it does not converge in probability to anything. We have two
ways to proceed:

1. Screen for first-stage F -statistic or some similar tests. If we are convinced that
the instruments are “strong,” then we can continuous with the classic 2SLS
procedure and test H0 : β = 0 via the usual t-test. We need to decide when
instruments are considered weak. (Stock and Yogo 2005)

2. Use a fully-robust test that works regardless of whether the instruments are
weak. We need to devise a test that is robust to the scenario that Π might be
arbitrarily close to 0.

In the YouTube video Stock (2008) provided an anecdote that some friend of his never
look at first-stage statistic and always uses fully robust inferences. This seems to be
the trend nowadays.

3 Fully Robust Inference

Remark 10. Is there a fully robust “estimator”? That is, is there some estimator β̂
that is consistent regardless of instrument strength? Clearly not, since if Π = 0, β
is not identified. Hence, there is no normal t-test that can be performed. However,
there are fully robust “test” that tests the hypothesis H0 : β = β0. (from Shi (2012))

There are three approaches in the literature to do fully robust inference (Stock 2008):

A1. Use a statistic that depends on µ2, but consider the worst case.
A2. Use a statistic that does not depend on µ2.
A3. Use a statistic that depends on µ2, but condition it on a computable sufficient

statistic so that the conditional distribution does not depend on µ2.
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Essentially, the first approach does not work, as the tests devised using this
approach does not have any power, i.e., they are too conservative.4 There are two
known procedures that belongs to the second approach: Anderson-Rubin Test and
Kleibergen’s Lagrangian Multiplier Test. The third approach is proposed by Moreira
(2003), which is the most powerful in terms of statistical power. We will focus on A2.
and A3. in this note.

The first fully robust inference in structural estimation is credited to Anderson
and Rubin (1949), who created the Anderson-Rubin Test (AR).

Definition 2 (Anderson-Rubin Test). Anderson and Rubin (1949) proposed the
Anderson-Rubin Test for testing β = β0. AR is defined by

AR(β0) :=
(y − Xβ0)

′PZ(y − Xβ0)/K

(y − Xβ0)
′(I − PZ)(y − Xβ0)/(T −K)

Remark 11. The original idea of Anderson and Rubin (1949) is simple: Suppose we
have the hypothesis H0 : β = β0, then the residual y − Xβ0 should be uncorrelated
with the instrument Z. (see Stock (2008) at around 1:15:50)

Remark 12. AR(β0) has an exact FK,T−K distribution under H0 (of course, only
under finite sample normality). Also, under weak IV asymptotics, AR(β0) converges
in distribution to χ2

K/K under H0, regardless of the size of µ2. (Stock, Wright, and
Yogo 2002)

Remark 13 (Robust Confidence Region). Using AR, we can construct a robust
confidence region of β by collecting all β0 such that AR(β0) fails to reject. (Staiger
and Stock 1997)

Remark 14. AR is a uniformly most powerful test when K = 1 (Moreira 2009).
However, the power of AR is low when K > 1.

Remark 15. AR can reject either due to β ̸= β0 or due to non-exogenous variables.

Before moving on to the statistic proposed by Kleibergen (2002), we should take
a look at Moreira (2009) to better understand how these “fully-robust” tests are
constructed.5

Moreira (2009) considered the following setting: The reduced form of the IV
model is y = Xβ+u = ZΠβ+ ṽ where ṽ = u+ vβ. Let (ṽt, vt) be a bivariate normal
distribution with known, for now, covariance matrix Ω. We are interested in the
hypothesis H0 : β = β0. This probability model belongs to the (curved) exponential
family, hence, Z′[y,X], or Z′[y,X]D for any invertible D, is a sufficient statistic for
the pair (β,Π). A convenient choice of D is to let D = [b0, a0] where a0 = (β0, 1)

′

b0 = (1,−β0)
′. With some appropriate scaling, we have that

S =
(Z′Z)−1/2Z′[y,X]b0√

b′0Ωb0
and T =

(Z′Z)−1/2Z′[y,X]Ω−1a0√
a′0Ωa0

(7)

are sufficient for the pair (β,Π).6

4One such procedure, Bonferroni Confidence Region, is discussed in Staiger and Stock (1997).
However, as mentioned in Stock (2008), no one really pursuits this route further as it is not that
useful.

5A manuscript of Moreira (2009) appeared as early as 2001.
6This particular set of S and T appeared in Stock, Wright, and Yogo (2002). Similar definitions

can also be found, of course, in Moreira (2009).
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Remark 16. Since S and T are sufficient for (β,Π), we can consider only functions
of S and T when constructing tests. Notice that in S, we have the term [y,X]b0,
which evaluates to u under H0. Therefore, S does not depend on Π under the null
hypothesis H0. This is the key why we can construct fully robust tests. (Stock,
Wright, and Yogo 2002)

Remark 17. Since S does not depend on Π under H0, T is sufficient for Π under
H0. It follows that a test of β = β0 based on some function g(S, T ) is similar if its
critical value is computed from the conditional distribution of g(S, T ) given T . In
this context, similar simply means that the distribution of the test statistic does not
depend on the nuisance parameter Π. 7 (Moreira 2009; Stock, Wright, and Yogo
2002)

Remark 18. Furthermore, one can show that S and T are independent normal
distributions. Hence the conditional distribution of g(S, T ) is obtained simply by
replacing T with the conditioned value. And since the conditional distribution of
g(S, T ) does not depend on Π (since S does not depend on Π), it is a pivotal and its
distribution is known (or at least can be computed with simulation). (Moreira 2009;
Shi 2012)

Remark 19. In practice, the value of Ω is not known. However, we can easily
estimate it using Ω̂ = [y,X]′(I − PZ)[y,X]/(T −K). Henceforth, we will denote the
“Ω̂ plugged-in” versions of S and T as Ŝ and T̂ respectively. (Stock, Wright, and
Yogo 2002)

Now we can rewrite Definition 2 as follows

Definition 3 (Anderson-Rubin Test). The Anderson-Rubin Test is defined as

AR(β0) =
1

K
Ŝ ′Ŝ

Remark 20. It is quite clear why AR is robust: S does not depend on the value of
Π under H0. However, we now see a potential room for improvement: since we need
to have both S and T to fully extract the information of β and Π, we must somehow
incorporate the set S and T in the test statistic.

Definition 4 (Kleibergen’s Lagrangian Multiplier Test). Kleibergen (2002) pro-
posed the Kleibergen’s Lagrangian Multiplier Test (KLM) as

KLM(β0) =
(Ŝ ′T̂ )2

T̂ ′T̂

Remark 21. When K = 1, then KLM(β0) and AR(β0) are equivalent.

Remark 22. KLM(β0) has standard/weak IV asymptotic of χ2
1 limiting distribution

under H0. It is remarkable that the asymptotic distribution of KLM is free of Π, even
though T is present. One way to see that the asymptotic distribution of KLM does
not depend on T is to check that for all values of T , KLM has the same asymptotic
distribution χ2

1.
7See Lehmann and Romano (2022) Chapter 4 Unbiasedness: Theory and First Applications for

details about statically similar tests.
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Remark 23. Compared to the asymptotic distribution of AR, which has χ2
K/K

limiting distribution, KLM(β0) has higher power when K is large since it has constant
degree of freedom.

Remark 24. However, one major downside of KLM is that it has weird power qual-
ities. That is, the test statistic is non-monotone in |β − β0| in some cases. Also, the
power of it is dominated by the statistic proposed by Moreira (2003). Thus in Stock
(2008), Stock said that he does not like KLM.

Definition 5 (Moreira Statistic). Moreira (2003) proposed the following Condi-
tional Likelihood Ratio Test (CLR)

CLR(β0) =
1

2

(
Ŝ ′Ŝ − T̂ ′T̂ +

√
(Ŝ ′Ŝ + T̂ ′T̂ )2 − 4 ·

(
(Ŝ ′Ŝ)(T̂ ′T̂ )− (Ŝ ′T̂ )2

))

conditional on T̂ .

Remark 25. The standard/weak IV asymptotic distribution of CLR(β0), condition
of T̂ , is non-standard, and depends on β0 and T̂ . Moreira (2003) suggests to compute
the asymptotic distribution with Monte Carlo simulation.

Remark 26. (Stock 2008) The problem of testing H0 : β = β0 when N = 1 is
essentially solved by CLR in practice. In simulations studies, CLR is practically the
uniformly most powerful test, since it closely hugs the theoretical power envelop. It
is more powerful than AR and KLM.

4 Further Topics

1. Limited Information Maximum Likelihood (LIML) and k-class estimators: A
more robust form of estimation compared to 2SLS.

2. Implications in Generalized Method of Moment (GMM).

Acronyms

2SLS Two Stage Least Square. 1–4, 7
AER American Economic Review. 1
AR Anderson-Rubin Test. 5–7
CLR Conditional Likelihood Ratio Test. 7
GMM Generalized Method of Moment. 7
iid independent and identically distributed. 1, 3
IV Instrument Variable. 1–7
KLM Kleibergen’s Lagrangian Multiplier Test. 6, 7
LIML Limited Information Maximum Likelihood. 7
OLS Ordinary Least Squares. 4
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